首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
停留时间对ABR污泥水解酸化系统影响研究   总被引:1,自引:0,他引:1  
以城市污水处理厂初沉污泥为研究对象,采用折流板反应器研究利用初沉污泥水解酸化产生碳源的可行性及其工艺特性.在温度为30℃,水力停留时间为24 h,污泥停留时间为3 d的条件下,经过30 d的试验运行,系统具备稳定产酸效果.酸化液的ρ(SCOD)和ρ(VFAs)极值分别达到1 182 mg/L和602.8 mg/L.试验表明,停留时间对系统酸化液碳源积累有重要影响,同等条件下增大水力停留时间可增加碳源的积累;而HRT大于32 h后,碳源数量增速减缓.固体停留时间在5 d时效果最佳,ρ(SCOD)、ρ(VFA)分别可达1 498 mg/L和895.3 mg/L;SRT增大到7 d时,产酸效果下降.  相似文献   

2.
初沉污泥水解酸化试验研究   总被引:7,自引:2,他引:5  
城市污水中碳源不足是普遍存在的问题,采用城市污水处理厂自身产生的废物(初沉污泥)进行水解酸化以开发碳源.控制温度为35℃,水力停留时间为28 h,污泥停留时间为3 d,水解酸化系统出水的ρ(SCOD)和ρ(VFA)达到的最大值分别为975.8 mg/L和516.4 mg/L.表明通过控制水力停留时间和污泥停留时间可以实现水解酸化系统的启动,水解酸化系统碱度在725 mg/L左右,pH值在7.12左右时,系统能保持稳定的水解酸化效果.研究表明,水解酸化系统出现波动时,ρ(SCOD)和ρ(VFA)总是优先于系统的碱度和pH值而发生变化,同时系统的碱度也能有效缓冲系统pH值的变化.  相似文献   

3.
两种类型生物制氢反应器的运行及产氢特性   总被引:4,自引:0,他引:4  
为探求反应器型式对发酵法生物制氢过程的影响,分别采用连续流搅拌槽式反应器(CSTR)和颗粒污泥膨胀床反应器(EGSB)接种厌氧活性污泥,从糖蜜废水中制取氢气.运行中控制温度为35℃,通过缩短水力停留时间(HRT)和增加进水COD质量浓度的方式逐渐提高容积负荷(OLR),分别对CSTR系统和EGSB系统的产氢速率、pH、液相末端产物及生物量进行研究.结果表明,两个系统中,产氢速率均随OLR提高而逐渐升高.CSTR的最佳产氢OLR为25~35 kg/(m3.d),而EGSB的最佳产氢OLR为70~80 kg/(m3.d);此时,CSTR系统的最大产氢速率为6.21 L/(L.h),EGSB系统的最大产氢速率可达18.0 L/(L.h).稳定运行期,EGSB系统的生物量为27.6 gVSS/L,而CSTR的生物量仅为7.8 gVSS/L,说明较高的生物量是生物制氢反应器稳定运行和高效产氢的关键.两个系统均可形成乙醇型发酵,说明发酵类型的形成不受反应器型式影响.与CSTR反应器相比,EGSB反应器具有更好的耐酸能力.  相似文献   

4.
HRT对发酵产氢厌氧活性污泥系统的影响   总被引:7,自引:0,他引:7  
HRT的改变可对发酵产氢厌氧活性污泥系统产生多方面的影响.在进水COD质量浓度为6 000 mg/L、35℃、不对进水pH值进行调节等条件下,发酵产氢厌氧活性污泥系统HRT从8 h降低为6 h时,其pH值、ALK分别从4.3和250 mg/L降低为4.2和180 mg/L,ORP从-380~-360 mV升高到-330~-300 mV,生物量虽然从8.7 gVSS/L降低到了7.2 gVSS/L,其产氢能力却从0.14 L/(gVSS.d)提高到0.22 L/(gVSS.d),液相末端发酵产物总量从1 106.1 mg/L增加为1 695.1 mg/L,作为乙醇型发酵目的产物的乙醇和乙酸的含量从90%减少为85%.HRT进一步降低为4 h时,系统内生态条件发生剧烈变化,其pH值、ALK、ORP分别为3.7、75 mg/L和-210 mV,生物量锐减至1.1 gVSS/L,同时乙醇型发酵演替为混合酸发酵,产氢能力下降为零.可见,多种因素可对发酵产氢厌氧活性污泥系统产生影响,而其中HRT是直接可控的第一影响因素.  相似文献   

5.
为提高低有机质剩余污泥的厌氧消化效率,采用超声波(40kHz,50W)与生石灰(投量为560mg/L)联合预处理剩余污泥,然后将预处理的剩余污泥进行中温两相厌氧消化.试验污泥取自长春市某污水处理厂,试验中主要考察剩余污泥的消化性能、产气情况及脱水性能变化.结果表明,当剩余污泥的VS/TS比值为0.56、水力停留时间(HRT)为20d时,预处理污泥厌氧消化后VS去除率达到40.8%.在消化过程中系统稳定,产酸相内挥发酸成分以乙酸和丁酸为主,而产甲烷相内以少量乙酸为主.产甲烷相的甲烷产率为0.33L/gVS去除,产气中甲烷平均含量可达到59.2%,但消化后污泥的脱水性能变差.污泥的联合预处理增加了液相中溶解性有机物的含量,提高了进料污泥的pH与碱度,有助于低有机质剩余污泥的后续厌氧消化处理.  相似文献   

6.
以连续流搅拌槽式反应器作为发酵生物制氢反应装置,针对有机负荷(OLR)对厌氧活性污泥发酵生物制氢系统运行的影响进行实验研究.在水力停留时间(HRT)8 h,(35±1)℃,进水COD质量浓度6000 mg/L,即OLR为18 kg/(m3.d)的条件下运行,厌氧活性污泥发酵产氢系统达到稳定时的平均产氢量为10.96 L/d,比OLR 12 kg/(m3.d)条件下提高了19.3%,比OLR 6 kg/(m3.d)条件下提高了52.3%.当进水COD质量浓度达到8000 mg/L,即OLR为24 kg/(m3.d)时,pH、ALK分别从大于4.1和250 mg/L的水平,迅速下降到3.7和5 mg/L以下,而ORP则从-350 mV急速上升到-210 mV以上.表明厌氧活性污泥微生物已无法承受有机负荷提高造成的环境变化,其活性受到严重抑制,反应器产氢能力急剧下降,系统的产酸发酵类型也发生了根本改变.  相似文献   

7.
采用自制的上流式厌氧污泥床(UASB)反应器研究种泥热预处理对培养产氢颗粒污泥的影响.2组反应器分别以原始污泥和经热预处理污泥作为种泥,在进水COD浓度为4 000 mg/L,温度为37℃,出水pH为4.6~5.0的条件下,逐渐将HRT由24h降低到7h,2组反应器都在HRT为8~7h时成功培养出成熟的颗粒污泥.此时,有机负荷为45 kg(COD)/(m3·d),接种原始污泥组产气量为41 L/d,氢气含量为52%,COD去除率为23%,总挥发酸为1380 mg/L;而接种经热预处理污泥组的有机负荷为57kg(COD)/(m3·d),产气量为44.5 L/d,氢气含量为47.5%,COD去除率为12%,总挥发酸为1086 mg/L.研究结果表明,种泥热预处理对产氢颗粒污泥的形成和稳定性有显著影响,虽然在形成颗粒污泥的过程中反应器稳定性较差,污泥易上浮,但颗粒形成后运行稳定,能适应更短的HRT,同时氢气产量也更高.  相似文献   

8.
有机废水产酸发酵典型类型的产氢能力   总被引:1,自引:0,他引:1  
通过连续流搅拌槽式反应器的运行,比较了丙酸型发酵、丁酸型发酵和乙醇型发酵等3种不同有机废水产酸发酵类型的产氢能力.在进水COD浓度为5 000 mg/L、HRT 8 h、(35±1)℃等条件下,丙酸型发酵厌氧活性污泥的比产氢速率平均仅为0.022 mol/(kgMLVSS·d);丁酸型发酵的产氢能力平均为0.57 mol/(kgMLVSS·d),是丙酸型发酵的25.79倍;乙醇型发酵厌氧活性污泥的平均比产氢速率为2.89 mol/(kgVSS·d),是丁酸型发酵的5.1倍,是丙酸型发酵的131.65倍.乙醇型发酵是有机废水发酵法生物制氢的最佳产氢发酵类型.  相似文献   

9.
为了强化硫酸盐还原反应器的还原效能,利用小空间厌氧移动床生物膜反应器,研究了反应温度、进水pH、水力停留时间( hydraulic retention time,HRT)、ρ( COD)/ρ( SO2-4)和回流比对SO2-4还原效果的影响,从而考察反应器还原SO2-4的效能及在高负荷条件下稳定运行状况.研究结果表明:温度35℃、进水pH=7.0、ρ( COD)/ρ( SO2-4)=2.5、HRT=8 h和回流比=4:1为反应器运行的最佳工况条件;进水SO2-4质量浓度在1500~2500 mg/L时,SO2-4的还原率保持在78.77%~88.89%,SO2-4的还原速率最高达5.90 kg/(m3·d),表明反应器具有较强的SO2-4还原能力;在进水SO2-4质量浓度为2250 mg/L左右时,连续运行20 d,SO2-4还原率达87.13%并能稳定运行.  相似文献   

10.
针对污水处理厂目前普遍存在碳源不足和剩余污泥量过大的问题,以某小区低ρ(C)/ρ(N)比生活污水为研究对象,构建了多级好氧缺氧生物膜反应器,考察了反应器脱氮、污泥减量效果及运行工况.试验表明反应器最优运行工况:流量分配比为3∶4∶3,HRT为11h,ρ(DO)为4.0 mg/L,温度为25℃,回流比R=1.0.在上述工况下,当进水ρ(TN)、ρ(NH4+-N)、ρ(COD)分别为80 ~ 130、75 ~ 100、260 ~ 400 mg/L时,ρ(TN)出水约20 mg/L,ρ(NH4+-N)、ρ(COD)出水分别降至5.0、30 mg/L以下,TN、NH4+-N、COD平均去除率分别达到80%、95%、91%.多级好氧缺氧试验同时表明:反应器中的污泥产率仅为0.10,优于其他生物膜工艺,具有良好的污泥减量效果.  相似文献   

11.
聚氨酯固定高效优势耐冷菌处理低温生活污水   总被引:4,自引:2,他引:2  
为确保寒冷地区污水生物处理系统的运行效能,以生活污水为研究对象,以聚氨酯泡沫为载体固定高活性耐冷菌,通过实验室小试,考察活性污泥法与生物接触氧化法联用的内循环复合生物反应器处理低温污水的效果及主要影响因素.结果表明,该工艺解决了由于冬季水温低出水难以达标排放的问题.系统对COD、BOD5和总磷的平均去除率分别为86.66%、90%和89.67%;系统HRT为10 h,活性污泥法处理单元与生物接触氧化法处理单元的DO分别保持在2.0~4.0 mg/L和4.0~8.0 mg/L,污泥负荷为0.25~0.30 kgCOD/(kgMLSS.d),可以使系统出水在冬季达到一级B排放标准.  相似文献   

12.
pH对发酵系统的产甲烷活性抑制及产氢强化   总被引:1,自引:0,他引:1  
为抑制厌氧发酵系统的产甲烷活性,强化其发酵产氢性能,采用逐级降低pH的调控方法,探讨连续流搅拌槽式反应器(CSTR)从具有显著甲烷发酵特征的厌氧发酵系统向发酵产氢系统转变的运行特征.在进水COD 7 000 mg/L、水力停留时间(HRT) 8 h条件下,发酵体系在pH 由65~72降低到60~65时,虽然发酵气中的甲烷体积分数逐渐减少乃至消失,但氢气体积分数一直在3%以下;当pH下降到40~50时,系统中的产酸发酵作用得到了进一步强化,挥发性发酵产物总量平均为2 052 mg/L,呈现为典型的乙醇型发酵,发酵气产量平均为26 L/d,其氢气体积分数稳定在45%左右,活性污泥的比产氢率达167 L/(g·d).  相似文献   

13.
厌氧升流式污泥床反应器处理维生素C废水   总被引:4,自引:0,他引:4  
为提高维生素C(Vc)生产废水的处理效率,探索其厌氧生物处理的可行性,采用2.2 L实验室规模的中温厌氧升流式污泥床反应器(UASB)在150 d试验周期内对其在处理Vc生产废水中的可行性及最佳运行参数进行探索.结果表明,以厌氧消化池污泥作为接种污泥,UASB反应器在65 d内启动成功.反应器运行稳定期间,进水COD质量浓度约为10000 mg/L,COD去除率达92%,其平均容积负荷达10.8 kg/(m3.d),相应的水力停留时间为15 h.反应器的产CH4速率为3.2 m3/(m3.d),产生的沼气中CH4含量为72%.所去除COD的89%被转化成CH4.污泥的VSS/TSS比率由接种期的0.41升高到0.82.污泥产甲烷活性由启动初期的0.18升高至0.85 L/(gVSS.d)并保持稳定.  相似文献   

14.
半短程硝化-厌氧氨氧化处理污泥消化液的脱氮研究   总被引:6,自引:0,他引:6  
采用实验室规模的半短程硝化-厌氧氨氧化联合工艺,研究了对高氨氮、低ρ(C)/ρ(N)污泥消化液的处理能力.结果表明,在A/O反应器中,短程硝化在温度9~20℃、平均ρDO=5.4 mg/L、SRT值为30 d左右时,进水氨氮负荷0.64 kg/(m3.d)的条件下,经过29 d得以实现,通过控制游离氨ρFA>4 mg/L时,此后,从30—96 d,出水亚硝氮累积率维持在70%左右;短程硝化实现之后,进而实现了半短程硝化,出水氨氮与亚硝氮浓度比维持在1∶1.32左右;采用UASB反应器,接种由好氧颗粒污泥、厌氧颗粒污泥、氧化沟活性污泥及短程硝化活性污泥组成的混合污泥,在避光、厌氧、(30±0.2)℃、pH=7.3~7.9条件下,以污泥消化液经短程硝化处理后的出水为进水,初期进水氨氮、亚硝氮容积负荷分别为0.07、0.10kg/(m3.d),经过24d运行,氨氮和亚硝氮开始出现同步去除现象,195 d时总氮去除负荷达1.03 kg/(m3.d);待半短程硝化运行稳定和厌氧氨氧化反应成功启动后,将二者联立并运行了105 d,最终总氮去除率达到70%.  相似文献   

15.
0 INTRODUCTIONSulfatereduction sulfideoxidation organiccom poundmineralizationisawellaccepted processforhighstrengthsulfateorganicwastewatertreatment,andinsulfatereductionunitsulfatecouldbeconvertedtosulfide (includingH2 S ,HS- andS2 - )bytheco operationofacid…  相似文献   

16.
生物-生态协同工艺深度处理城市污水   总被引:2,自引:0,他引:2  
为实现碳源含量低、营养盐含量高的城镇污水高效、低耗地脱氮除磷,提出以生物、生态协同组合模式脱氮除磷.试验规模为100 m3/d,其中生物段为悬浮式活性污泥系统,生态段为人工湿地和稳定塘的串联系统.根据进水特征和单元工艺的特性调节单元工况类型和运行参数,合理分配两段污染物负荷,协同组合两段工艺,达到生物段灵活、高效性和生态段低耗、稳定性的最佳结合.研究表明,生物段HRT 6~8 h、人工湿地水力负荷0.34~0.54 m3/(m2.d)时,组合工艺COD去除率为90%、TN去除率为60%~80%、TP去除率为99%,出水可作为湖泊的补充水源利用,达到保护湖泊生态的目的.  相似文献   

17.
针对废水两相厌氧处理系统中产酸相反应器的乙醇型发酵启动速度较慢,污泥易流失的不足,本文采用在产酸相反应器中接种厌氧颗粒污泥,同时控制启动容积负荷、负荷提高幅度、碱度等运行参数,对反应器乙醇型发酵的形成情况进行考察.通过监测液相末端产物、pH、ORP、酸化度等指标来考察反应器的运行情况,结果表明:反应器在34 d内完成由混合酸发酵-丁酸型发酵-乙醇型发酵的演替过程.启动结束时,乙醇+乙酸质量质量浓度之和占液相末端产物总量的75.9%以上;pH值稳定在4.1~4.3;ORP值稳定在-230~-250 mV;接种的厌氧颗粒污泥性质发生明显变化,其表观颜色逐渐由黑色和灰黑色变为土黄色和黄褐色,粒径明显减小,多在0.50~1.25 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号