首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
为了制备脂肪酸甲酯掺水微乳化液,以无水乙醇为极性助溶剂,以OP-4、SPAN80和自配表面活性剂L为乳化剂,对微乳化液的掺水特性进行研究。研究结果表明:随着无水乙醇体积分数或乳化剂添加量的增加,微乳化液最大掺水量增加;在3种乳化剂中,OP-4对脂肪酸甲酯掺水的微乳化效率最高;脂肪酸甲酯掺水微乳化液可以作为燃料在柴油机上使用。  相似文献   

2.
以丙烯酸酯类单体为主要原料、以阴离子型乳化剂(F-20)和反应型非离子型乳化剂(X-03)为阴/非离子型复合乳化剂,采用预乳化半连续种子乳液聚合法合成了核/壳型丙烯酸酯微乳液。研究结果表明:当m(F-20)∶m(X-03)=3∶1、m(釜底乳化剂)∶m(预乳化液中乳化剂)=3∶1、m(核层中乳化剂)∶m(壳层中乳化剂)=1∶1、w(复合乳化剂)=9.0%、w(引发剂)=0.20%、固含量为25%和w(AA)=6%~8%时,相应核/壳型微乳液的综合性能良好,其平均粒径为29.1 nm,PDI(粒径分布指数)为0.223;将该乳液作为皮革填充黏合剂时,其填充性能优于单层微乳液,并且接近于国外同类产品。  相似文献   

3.
曾建 《广州化工》2006,34(3):46-47
研究了一种多元共聚丙烯酸酯压敏胶乳液,按照半连续乳液聚合法聚合而成,并讨论了软硬单体、功能单体、乳化剂的选择对乳液性能的影响。通过改变预聚单体乳化液数量来调节乳液的粘度以满足不同的涂布工艺的需要。  相似文献   

4.
使用复配乳化剂,以液态烷烃为连续相,丙烯酰胺溶液为分散相制备均匀的油包水(W/O)型微乳液。通过测定体系电导率及观察稳定性,以水相的最大增溶度为指标,研究了连续相的种类、乳化剂复配、丙烯酰胺(AM)单体浓度、电解质浓度对微乳液体系稳定性的影响。结果表明:以异构烷烃Isopar M为连续相,乳化剂Span80/OP-10复配且当复配乳化剂中Span80含量占80%时,体系对水相增溶量最大;提高AM浓度、加入适量电解质Na Ac,都会增强微乳液的稳定性;电解质的加入还会提高乳化剂的最佳HLB值。  相似文献   

5.
以醋酸乙烯酯,丙烯酸丁酯和甲基丙烯酸甲酯为原料,采用反应型乳化剂SVS与传统乳化剂(SDS,OP-10)复配,制备了具有核壳结构的醋-丙微皂乳液,讨论了软硬单体的选择,乳化剂选择及用量对乳液及涂膜性能的影响,并采用DSC,TEM等对共聚物的结构和乳液的性能进行表征。结果表明,通过半连续核壳乳液聚合方式,采用合适的反应型乳化剂复配体系,可用于制备综合性能优异,乳胶粒子粒径在80-100nm的醋-丙微皂乳液。  相似文献   

6.
广东澳力丹润滑油有限公司自行开发研制的金属加工微乳化液,于2005年11月20日通过了由广东省科技厅组织主持的科技成果鉴定会,专家普遍认为:该产品综合性能好,达到国内领先水平。这种微乳液可集润滑性,清净性,防锈性和透明性于一体,而且环保、节能、长寿命。  相似文献   

7.
黄艳娥  王兰兰 《河北化工》2006,29(11):12-15
利用微乳化剂Span 80(失水山梨醇单油酸酯)、D 08/1021(双烷基氯化铵),助乳化剂正戊醇,自来水制备出了柴油微乳液;进一步探讨了温度、加料方式、搅拌方式等对制备微乳液的影响.结论为温度在30-35℃时制备的微乳液澄清较快,而加料方式以及加料过程中的搅拌对微乳液的制备无影响.对所制备的微乳液样品进行稳定性验证:先混配制得微乳化剂,再将柴油和微乳化剂混合均匀,搅拌一段时间后加入水,再搅拌一段时间后加助乳化剂正戊醇,操作温度控制在30℃,由此制得的柴油微乳液澄清较快,且稳定性高.  相似文献   

8.
选择水-煤油体系(体积比为水:煤油:10:1),分别用机械搅拌法和陶瓷微滤膜制备乳液.研究了乳化剂及增稠剂阿拉伯树胶的浓度对乳液稳定性的影响。实验结果表明:对于水一煤油体系,选择质量分数为0.8%的Tween80为乳化剂,加入质量分数为1%的阿拉伯树胶为增稠剂,用0.1μm陶瓷微滤膜为分散介质可以制备粒径分布均匀的乳化液体系,且膜两侧压差及连续相流速对乳液稳定性的影响不大。  相似文献   

9.
介绍了一种利用半连续乳液聚合工艺制备水性复膜胶的方法。以阴非复合型乳化剂CO-459为乳化剂,以丙烯酸丁酯、醋酸乙烯为主要单体,同时添加AA、HPA、NMAM、DAAM和ADH等作为功能单体参与共聚,并在此基础上添加同一乳化体系的苯丙乳液,提高产品的性能。重点讨论了单体、乳化剂、反应温度和苯丙乳液的加入对醋丙乳液的聚合及性能的影响。实验结果表明,单体BA∶VAC=1∶1~1.5、功能单体用量为总投料量的2.1%、乳化剂用量为总投料量的1.1%、反应温度为80~85℃、苯丙乳液添加量为醋丙乳液的30%,制得的乳液成本低廉、性能经实际上机使用满足客户的要求。  相似文献   

10.
新型油墨清洗剂的研制及其应用研究   总被引:1,自引:0,他引:1  
胡鑫鑫  林洁  张庆  陈颖峰  黄小翰 《当代化工》2011,40(5):454-456,516
成功地研制了一种新型、高效、安全、低成本的油墨清洗剂,克服了直接使用溶剂而带来的易燃、易爆的缺点.此油墨清洗剂是由乳化剂、表面活性剂、溶剂及其它助剂构成的O/W型微乳液.结果表明清洗剂各组分的复配比对清洗剂使用性能具有较大影响,该微乳液可替传统溶剂型油墨清洗剂用于印刷机件上油墨的清洗,且使用效果和安全性能超过汽油、煤油...  相似文献   

11.
采用聚合体系乳化剂HLB值动态变化的合成工艺,制备了w(丙烯酸羟乙酯)=12%的聚丙烯酸酯多元醇细乳液(PAME)。PAME的优化合成条件为:m(混合单体)∶m(AA)∶m(乳化剂)∶m(KPS)=1∶0.02∶0.025∶0.004,釜底乳化液HLB值为31.6,滴加部分预乳化液HLB值为20.9,m(滴加乳化剂)∶m(釜底乳化剂)=3∶2,反应温度为80℃,反应时间为4~5 h。聚合过程无需pH缓冲剂,细乳液粒径<110 nm,室温贮存1 a无沉底。  相似文献   

12.
随着高分子合成技术的迅速发展,乳液聚合法的发展创新趋势较为明显,其聚合过程对商品聚合物的生产至关重要,所制备出的聚合物乳液可直接用作水性涂料和胶粘剂等。文中具体介绍了细乳液聚合体系的设计方法、聚合过程及稳定机理,重点综述了近年来细乳液聚合在高固含量细乳液制备、纳米复合材料制备(荧光聚合物纳米粒子、有机 /无机纳米复合材料)及聚合物空心球或微球制备等方面的研究进展。  相似文献   

13.
功能性丙烯酸酯乳液的制备与应用研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
介绍了核-壳乳液聚合、乳液互穿聚合物网络、无皂乳液聚合、微乳液与细乳液聚合等方法与技术在制备功能性丙烯酸酯乳液中的应用。阐述了有机硅、有机氟、聚氨酯、环氧树脂等改性方法用于制备功能性丙烯酸乳液的研究进展。详细介绍了功能性丙烯酸乳液在功能涂料、胶黏剂、皮革涂饰剂、油墨等领域的应用现状,提出了功能性丙烯酸酯乳液的发展趋势:采用新的聚合技术、改性技术制备具有附加值高、性能优异且环境友好的水性功能性乳液是今后丙烯酸酯乳液的主要发展方向。  相似文献   

14.
聚氨酯-丙烯酸酯复合乳液制备方法的进展   总被引:1,自引:0,他引:1  
综述了聚氨酯-丙烯酸酯(PUA)复合乳液的制备方法,主要包括共混交联法、核壳乳液聚合法、互穿聚合物网络( IPN)法、无皂乳液聚合法、微乳液聚合法和细乳液聚合法;介绍了这些制备方法的优势和应用范围,并展望了PUA复合乳液的发展前景.  相似文献   

15.
With a xanthate-based low activity RAFT (reversible addition–fragmentation chain transfer) agent, the living emulsion polymerization system follows zero-one kinetics and particles are smaller than their characteristic cross over diameter. The size and kinetic limitations in RAFT emulsion were investigated by using the concept of crossover size, based on a mechanistic approach. The main reason for these limitations is attributed to the low transfer constant, which tends to render desorption of a radical from particles difficult, the incoming z-mer has a higher probability to propagate relative to the addition process in RAFT equilibrium. In contrast, the living mini-emulsion polymerization follows either zero-one or pseudo-bulk kinetics, depending on the initial droplet size and reaction conditions.  相似文献   

16.
Many advanced methods are developed for the synthesis of emulsions in the literature, but the effect of imperative parameters of emulsion like oil concentration, pH, temperature, and time on the emulsion stability index (ESI) by design of experiments have not been studied previously. The ESI is an important parameter of emulsion to run the industrial process extensively and reflects the emulsion efficiency to sustain against instability like creaming, coalescence, and flocculation. In the present study, the research plan consists of three phases. In the first phase, the synthesis of an eco-friendly and cost-effective mustard oil-based nanoemulsion with a suitable selection of the surfactant on the bases of the polydispersity index (PDI) is developed. In the next phase emulsions, characteristic properties are scanned by employing various techniques and antirust property compared with reference emulsion. Finally, the impact of emulsion's parameters on ESI is studied by factorial design. The findings that depict the impact of parameters of oil concentration and time on ESI are found influential, whereas the effect of pH and temperature is insignificant. Therefore, good characteristic results, stability, and the inhibition against rust of newly developed emulsion can be adapted to run the cold rolling process smoothly. Practical Application: In the present era, metal processing industries are forced to explore the environmentally friendly oil-in-water emulsions (that used as an interface, lubricant, cooling, and antifrictional agents in cold rolling industries) to overcome increasing environmental pollution. Mustard oil-based emulsion modified by nanoparticles (Nps) offers a good source of eco-friendly, cost-effective, and economic booster for metal processing industries. The antimicrobial properties of mustard oil are well defined in previous research articles. Such oil is a magnificent source for the synthesis of the emulsion and modification of mustard oil-based emulsion with titanium dioxide. Nps provide significant protection against rust. Such applications can encourage the use of mustard oil-based nanoemulsion for metal processing industries.  相似文献   

17.
综述了几种聚氨酯/丙烯酸酯(PUA)复合乳液的制备方法,包括乳液共聚法、核壳聚合法、互穿聚合物网络法、无皂乳液聚合法、微乳液聚合法和细乳液聚合法等,并介绍了这些制备方法的优势和应用范围,最后对PUA复合乳液的发展前景作了展望.  相似文献   

18.
采用一种特制的齿状搅拌头(简称STB搅拌头),在600 r/min的转速下均质化,成功制备了环氧-丙烯酸酯杂化"细乳液".然后用傅里叶红外光谱(FTIR)、激光光散射粒径仪(PCS)及透射电镜(TEM)对乳液的相关性能进行了表征.结果表明:杂化乳液的聚合稳定性和储存稳定性优异,且其涂膜的耐水性、附着力和耐磨性能良好.  相似文献   

19.
Hybrid polymer latexes will be defined here as colloidal dispersions in which at least two distinct polymers exist within each particle. The two polymers may form a homogenous blend within the particle or microphase separation may occur. There are two general routes for their preparation. The first involves the use of a mini-emulsion polymerization process, in which a first polymer, most often prepared via polycondensation (or polyaddition), is dissolved in an unsaturated monomer (or a mixture of monomers). The solution is first emulsified into small droplets under a high shear process and then polymerized through a radical polymerization process. A variation of this route involves the synthesis of the polycondensate directly in the mini-emulsion. The second route involves a seeded emulsion polymerization of unsaturated monomer(s), in which the polycondensate is modified for use as a seed in the emulsion polymerization. Most often, styrenic and acrylic monomers are used, while the polycondensate may be alkyd resins, polyesters, epoxy resins, polyurethanes, or other polymers. The two routes are described in detail, as are the properties of the resulting materials (mostly as films). Up to now, there have been very few trials for the comparison of the two main routes. Most often the comparison is related to blends of the two kinds of emulsified polymers.  相似文献   

20.
研究了Span80/Tween80、Span80/M-9、Span85/Tween85、Span80/OP-10、Span85/Tween80、M-3、Span85/M-9、Span85/OP-10八种非离子乳化剂复配体系对AM/AMPS反相乳液电导率、油水界面张力、乳液稳定指数、乳液微观结构等的影响。结果表明,适合AM/AMPS反相乳液体系的乳化剂为Span80/OP-10。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号