首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
《塑料工业》2006,34(11):16-16
华东理工大学聚合物加工研究室的科研人员,最近采用复合改性PP作为相容剂,使用熔融浸渍法,制备出玻璃纤维毡增强PP热塑性复合片材。通过加入复合改性PP,改善了基体PP与增强纤维间的相容性,可使复合片材的拉伸强度提高29%,拉伸模量提高23%,弯曲强度提高42%,弯曲模量提高25%。这表明复合改性PP完全可以作为相容剂,而且效果显著。  相似文献   

2.
相容剂马来酸酐接枝聚丙烯(PP-g-MAH)作为聚丙烯和玻璃纤维的桥梁,可极大的改善玻璃纤维和聚丙烯的相容性和分散性,提高玻纤增强聚丙烯的性能。本文论述了相容剂添加量对玻纤增强聚丙烯性能的影响,主要研究熔融指数,拉伸强度,弯曲强度,弯曲模量和缺口冲击强度,并分析了各项性能与相容剂添加量的关系。结果表明,相容剂的加入能够提升玻纤增强聚丙烯的综合性能。  相似文献   

3.
《塑料科技》2017,(10):35-38
通过熔体浸渍法制备了一定玻纤含量的长玻纤增强聚丙烯(PP/LGF)母粒,然后将一定配比的母粒与PP通过注射机注塑成样条,研究了LGF用量及相容剂、增韧剂的添加对PP/LGF复合材料力学性能的影响。结果表明:当LGF用量为35%左右时,PP/LGF复合材料的力学性能达到最佳,较之纯PP显著提升。相容剂的加入改善了PP/LGF复合材料的力学性能,并且提高了LGF和PP之间的黏结力。增韧剂的加入使得复合材料的拉伸强度、弯曲强度和弯曲模量呈现下降的趋势,冲击强度则随增韧剂用量的增加逐渐提升。  相似文献   

4.
通过玻璃纤维(GF)毡与双螺杆挤出相容剂改性聚丙烯(PP)膜的多层叠合,以熔融浸渍法制得PP基GF毡增强热塑性塑料(GMT)复合材料,研究了相容剂PP接枝马来酸酐(PP-g-MAH)和PP接枝丙烯酸(PP-g-AA)的用量(为PP基体质量的百分数)及其复配改性,以及相容剂改性PP基体分布和毡体种类对GMT力学性能的影响。结果表明,PPg-MAH可明显提高GMT的拉伸与弯曲性能,但降低了冲击性能;PP-g-AA可明显提高GMT的冲击性能,但不利于拉伸与弯曲性能的提高,只有当PP-g-AA用量超过5%后,拉伸性能才有所提升。在PP-g-MAH用量为3%的条件下,将其与不同用量的PP-g-AA进行复配改性没有对GMT力学性能产生协同作用。在各相容剂用量相近(3%~3.5%)的情况下,与相容剂复配改性GMT相比,以两层PP-g-AA改性PP为芯层、PP-g-MAH改性PP为上下表面层作为改性基体分布时,GMT拉伸与弯曲强度分别提高17%和27%、缺口冲击强度提高48%;而以两层PP-g-MAH改性PP为芯层、PP-g-AA改性PP为上下表面层作为改性基体分布时,在不损失强度与刚性的同时,缺口冲击强度提高了88%。采用连续GF毡的GMT力学性能比采用短切GF毡的GMT高,尤其是缺口冲击强度提高了89.6%。  相似文献   

5.
通过对比力学性能、拉伸性能及冲击样条断面形貌的变化,研究了螺杆组合改变对玻璃纤维(简称玻纤)增强聚丙烯(PP)性能的影响。结果表明:玻纤引入口至真空排气口之间的螺杆元件组合对玻纤增强PP性能的影响十分明显。由正输送元件、捏合元件、反输送元件组合改造成剪切捏合螺杆组合,提高了玻纤增强PP的拉伸强度、弯曲强度、弯曲模量和缺口冲击强度。  相似文献   

6.
玻纤增强聚丙烯复合材料性能研究   总被引:7,自引:1,他引:6  
研究了玻纤(GF)、SEBS和聚丙烯接枝马来酸酐(PP-g-MAH)用量对GF增强聚丙烯复合材料性能的影响,以及PP/GF(65/35)、PP-g-MAH/PP/GF(15/65/35)的微观形态。结果表明:随着GF用量的增加,复合材料的拉伸强度、弯曲强度和弯曲模量增加,断裂伸长率降低,冲击强度先减小后增大,PP/GF复合材料断面呈脆性断裂;在PP/GF中添加增韧剂SEBS可以提高复合材料的冲击强度,但拉伸强度、断裂伸长率、弯曲强度和弯曲模量均减小;在PP/GF中添加增容剂PP-g-MAH,可使其拉伸强度、断裂伸长率、弯曲强度、弯曲模量和冲击强度均得到提高,当PP-g-MAH/PP/GF为15/65/35时,复合材料性能优异,材料断面呈韧性断裂。  相似文献   

7.
影响聚丙烯基木塑复合材料力学性能因素   总被引:10,自引:0,他引:10  
研究了偶联剂、相容剂、木粉用量和木质填料种类对以聚丙烯(PP)为基体树脂制备小塑复合材料力学性能的影响。结果表明,以硅烷偶联剂处理木粉或直接加入相容剂均使复合材料力学性能得到提高;木粉用量的提高使复合材料冲击强度下降,弯曲强度、弯曲模量、拉伸强度则大幅提高;在分别以粒径为0.14mm木粉和0.22mm木粉、竹粉、花生壳粉、稻壳粉制备复合材料,以粒径为0.14mm木粉与PP制备的复合材料力学性能最好。  相似文献   

8.
分别以玻纤毡、玻纤毡/纳米碳酸钙及长玻纤作为增强物制得了三种聚丙烯复合材料,并通过流动模塑试制了汽车发动机防护罩。结果表明:三种热塑性复合材料片材与制品具有优异的力学性能,拉伸强度、弯曲强度、模量和冲击强度分别大于60MPa、100MPa、3500MPa和50kJ/m^2,热变形温度158℃左右。制品面内玻纤分布均匀,热稳定性好。由热塑性复合材料制得的制品较热固性片状模塑料制备的制品质量减少35%以上。热塑性复合材料中以长玻纤增强聚丙烯的流动性最好、得到的制品质量最轻。  相似文献   

9.
以聚丙烯(PP)树脂为基体,加入玄武岩纤维(BF)和相关助剂,通过双螺杆挤出机熔融共混制得相应复合材料。考查相容剂对PP/BF复合材料性能影响、对PP/BF复合材料和PP/玻璃纤维(GF)复合材料力学性能、微观形貌和耐热氧老化等性能进行对比。通过实验数据分析,加入相容剂后,拉伸强度提高126.8%,弯曲强度提高223.8%,弯曲弹性模量提高119.9%,悬臂梁缺口冲击强度提高223.2%。在同样质量配比下,PP/BF复合材料较PP/GF复合材料拉伸强度提高9.8%,弯曲强度提高11.0%,弯曲弹性模量提高5.8%,悬臂梁缺口冲击强度降低10.7%。从微观电镜分析,加入相容剂可明显改善纤维与PP基材界面浸润程度。另外,BF比GF更易使复合材料老化,常规热氧老化剂1010和168对纤维增强PP类材料耐老化效果并不好,用等量自制热氧老化剂可解决此问题。  相似文献   

10.
PC/ABS合金的力学性能的研究   总被引:2,自引:0,他引:2  
利用双螺杆挤出机对PC/ABS进行共混,并探讨了PC的质量分数、三种相容剂以及阻燃剂对PC/ABS合金性能的影响。结果表明,拉伸强度随PC含量增加而升高,弯曲强度与弯曲模量则下降,冲击强度则呈现先降后升的趋势;不同相容剂的加入对PC/ABS合金的力学性能均有不同程度的提高;三种阻燃剂中氮磷复合阻燃合金的效果最好。  相似文献   

11.
以丙烯腈-丁二烯-苯乙烯共聚物(ABS)及玻璃纤维(GF)为原料,以环氧树脂作为界面相容剂,研究了界面相容剂对玻璃纤维增强ABS复合材料力学性能及界面粘接的影响.结果表明:加入环氧树脂,玻纤增强ABS复合材料的力学性能明显提高;随着玻纤质量分数的增加,复合材料的拉伸强度、弯曲强度、冲击强度均逐渐增加;玻纤质量分数为30%时,GF/ABS/环氧树脂复合材料的拉伸强度比未改性的复合材料的拉伸强度提高了30%,弯曲强度提高了25%,冲击强度也提高了50%.  相似文献   

12.
Jute fiber mat (hessian cloth) reinforced PET-based composites (50% fiber by weight) and E-glass fiber matreinforced PET based composites (50% fiber by weight) were fabricated by compression molding and the mechanical properties tensile strength (TS), tensile modulus (TM), elongation at break (%), bending strength (BS), bending modulus (BM), impact strength (IS) and hardness (Shore-A) of the composites were evaluated and compared. The interfacial properties of the both composites were also compared. Water uptake test and soil degradation test were also investigated.  相似文献   

13.
研究复配增容剂(SEPS/PP-g-MAH)对玻璃纤维(GF)增强聚苯醚(PPO)/聚丙烯(PP)力学性能、熔体流动性以及耐热性能的影响,并用扫描电子显微镜观察了不同共混体系的形态结构.结果表明,复配增容剂改善了PPO/PP/GF共混体系的相容性,提高了共混体系的拉伸强度、弯曲强度、冲击强度和熔体流动速率,但同时降低了...  相似文献   

14.
刘学习  戴干策 《现代化工》2004,24(11):43-46
为了获得高刚性和高韧性的玻璃纤维毡增强聚丙烯(GMT-PP),首先制备了硅烷接枝聚丙烯(PP-g-Si),研究了PP-g-Si对GMT-PP的增容作用及增容机理.结果表明质量分数低于20%的PP-g-Si,可以提高GMT-PP的拉伸和弯曲性能,而冲击强度几乎没有变化;PP-g-Si对GMT-PP的增容机理为PP-g-Si的甲硅烷基氧与结合在玻璃纤维上的氨基硅烷的氨基相互吸附形成了氢键.  相似文献   

15.
本文制备了碳纤维增强聚碳酸酯(PC)复合材料并研究了其性能,相比玻璃纤维增强PC,碳纤维增强PC在机械性能、电性能和加工性等方面有明显的提高.随着碳纤维含量的增加,拉伸强度、弯曲强度、弯曲模量明显呈上升趋势.而伸长率和冲击强度在碳纤维含量为6%时达最大值,分别为10.4%kJ/m~2和8.7kJ/m~2.加工流动性有了明显的提高,且随碳纤维含量的增加而逐渐降低.碳纤维的加入,也改善了PC的导电性,当碳纤维含量为10%时,导电电阻率已达到9.0×10~6Ω/sq.  相似文献   

16.
Hessian cloth (jute fabrics) reinforced poly(propylene) (PP) composites (45 wt% fiber) were prepared by compression molding and the mechanical properties were evaluated. Jute fabrics and PP sheets were treated with UV radiation at different intensities and then composites were fabricated. It was found that mechanical properties of the irradiated jute and irradiated PP-based composites were found to increase significantly compared to that of the untreated counterparts. Irradiated jute fabrics were also treated with aqueous starch solution (1–5%, w/w) for 2–10 min. Composites made of 3% starch-treated jute fabrics (5 min soaking time) and irradiated PP showed the best mechanical properties. Tensile strength, bending strength, tensile modulus, bending modulus and impact strength of the composites were found to improve 31, 41, 42, 46 and 84% higher over untreated composites. Water uptake, thermal degradation and dielectric properties of the resulting composites were also performed.  相似文献   

17.
采用转矩流变仪混合造粒,通过注射成型方法制备了聚丙烯(PP)/麦秸秆木塑复合材料,研究了NaOH浓度、增容剂的含量和麦秸秆含量对PP/麦秸秆木塑复合材料力学性能的影响,采用扫描电子显微镜对麦秸秆表面及复合材料的断面形貌进行分析。结果表明:8%NaOH溶液处理麦秸秆时,PP/麦秸秆木塑复合材料的拉伸强度、弯曲强度和冲击强度达到最大;马来酸酐接枝PP增容剂的加入使得麦秸秆与PP的界面相容性提高,复合材料的力学性能增加;在一定范围内麦秸秆的添加降低了PP材料的拉伸强度和冲击强度,而提高了其弯曲强度,并且PP/麦秸秆复合材料的弯曲强度随着麦秸秆含量的增加而增加,在麦秸秆含量为30%时弯曲强度达到最大值为43.4 MPa。  相似文献   

18.
剑麻纤维/长玻纤混杂增强PP复合材料的力学性能研究   总被引:1,自引:1,他引:0  
采用剑麻纤维(SF)和长玻璃纤维(LGF)混杂增强聚丙烯(PP)复合材料,考察了SF/LGF的比例和含量对PP复合材料力学性能的影响。结果表明:SF/LGF在聚丙烯树脂基体中呈交叉网状分布,这有利于提高复合材料的冲击强度、弯曲模量、拉伸强度和软化点。在SF/LGF质量比为2 2∶,二者总质量分数为30%时,SF/LGF混杂增强PP复合材料的综合力学性能较好。  相似文献   

19.
This work is concerned with the extrusion of sheets from pellets of polypropylene (PP) containing pregenerated microfibrils of thermotropic liquid crystal polymers (TLCPs), referred to as microcomposites. The TLCPs used were HX6000 and Vectra A950. The microcomposites are produced by drawing strands of PP and TLCPs generated by means of a novel mixing technique and pelletizing the strands. The work was undertaken in an effort to improve on the properties for in situ composites in which the TLCP fibrils are generated in contractions in the die and the subsequent drawing step. In situ composites usually exhibit highly anisotropic mechanical properties and the properties do not reflect the full reinforcing potential of the TLCP fibers. Factors affecting the mechanical properties of the composite sheets considered include the effect of in situ composite strand properties and TLCP concentration. In addition, the properties of the extruded sheets are compared to those of microcomposites processed by means of injection molding. It is shown that the sheets produced using microcomposites have a good balance between the machine and transverse direction properties (ratios of these properties ranging from 0.8 to 1.2) and those properties compare well to those obtained by processing microcomposites in injection molding. The tensile modulus of the composite sheets increases with increasing in situ composite strand modulus. The moduli of the 20 wt% Vectra A950 and HX6000 composites are about equal to the modulus of 20 wt% glass reinforced PP (about 2.1 GPa), while the tensile strength of the TLCP reinforced composites is 28% lower than that of the glass reinforced PP. Furthermore, it is shown that the tensile modulus of the 10 wt% TLCP composites approach the predictions of composite theory, while at 20 and 30 wt% TLCP negative deviations from the predictions of composite theory are seen. Finally, it is concluded that the properties of the sheets produced through the extrusion of microcomposites may be further improved by improving the modulus of in situ composite strands and reducing the TLCP fiber diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号