首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceria (CeO2) nanoparticles of 10-30 nm in average particle size have been synthesized via electrochemical deposition method in cerium(III) chloride solution with an undivided cell as electrochemical cell and ethanol-acetylacetone as additives. X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR) and thermal analysis (TG-DTA) are introduced to characterize the samples. The results indicate that the as-prepared powders after being treated at 650 °C are nanocrystalline with the cubic fluorite structure and the sphericity in shape. It is revealed that the size of ceria nanoparticles can be decreased effectively by adding the ethanol-acetylacetone solution. In addition, the possible formed mechanism of CeO2 nanometer-scale powder. The role of additive is also investigated in this paper.  相似文献   

2.
This work reports on seed-mediated synthesis and size control of monodispersed CeO2 nanoparticles. CeO2 nanoparticles of mean size smaller than 2 nm were first prepared by a simple mixing of aqueous solution of cerium (IV) sulfate and ammonia solution at ambient conditions. Using these as-prepared fine particles as the tiny seeds, tunable sizes of CeO2 nanoparticles were achieved via a facile hydrothermal treatment. All samples were characterized by X-ray diffraction (XRD), infrared (IR) spectroscopy, UV-vis spectroscopy, and thermogravimetric analysis (TGA). It is shown that in comparison with other inorganic cerium salts such as cerium (III) nitrates, cerium (IV) sulfate appears more suitable for forming CeO2 nanoparticles at room temperature. Sulfate groups are strongly thermodynamically adsorbed on CeO2 nanoparticle surfaces. The formation mechanism, surface hydration and sulfation characteristics of the resulting CeO2 nanoparticles are also discussed.  相似文献   

3.
Single-crystalline cerium carbonate hydroxide (Ce(CO3)(OH)) with dendrite morphologies have been successfully synthesized by hydrothermal method at 150 °C using Ce(NO3)3·6H2O as the cerium source, aqueous carbamide as both an alkaline and carbon source and poly(vinyl pyrrolidone) (PVP) as surfactant. Ceria (CeO2) with dendrite morphologies have been fabricated by a thermal decomposition-oxidation process at 500 °C for 6 h using single-crystalline Ce(CO3)(OH) dendrites as the precursor. The dendrite morphologies of Ce(CO3)(OH) was sustained after thermal decomposition-oxidation to CeO2. The as-prepared products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), and thermogravimetric analysis (TG).  相似文献   

4.
The synthesis of SiO2 coated CeO2 nanoparticles by humid solid state reaction at room temperature is described. Transmission electron microscope results show that CeO2 particles were coated with a layer of SiO2. Binding energy of Ce 3d5/2 was shifted from 883.8 to 882.8 eV after coating in the XPS Ce 3d spectra. This confirms the chemical bond formation between SiO32− and Ce4+. Because the surface photovoltage property of CeO2 nanoparticles that were used as core materials in the experiment approaches to that of CeO2 macroparticles, peak P2 (electron transition from O 2p on surface to Ce 4f) disappeared in the surface photovoltage spectrum of CeO2 nanoparticles. Also, the effect of SiO2 on the electron transition from O 2p to Ce 4f results in the lowering of surface photovoltage response intensity of P1 peak (electron transition from O 2p in bulk to Ce 4f).  相似文献   

5.
Microwave was employed in the shape-controlled synthesis of palladium nanoparticles. Palladium nanocubes and nanobars with a mean size of about 23.8 nm were readily synthesized with H2PdCl4 as a precursor, tetraethylene glycol (TEG) as both a solvent and a reducing agent in the presence of PVP and CTAB in 80 s under microwave irradiation. The structures of the as-prepared palladium nanoparticles were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and ultraviolet-visible (UV-vis) absorption spectroscopy. The formation of PdBr42−due to the coordination replacement of the ligand Cl ions in PdCl42− ions by Br ions in the presence of bromide was responsible for the synthesis of Pd nanocubes and nanobars. In addition, a milder reducing power, a higher viscosity and a stronger affinity of TEG were beneficial to the larger sizes of Pd nanocubes and nanobars.  相似文献   

6.
Mn-doped CeO2 nanorods have been prepared from CeO2 particles through a facile composite-hydroxide-mediated (CHM) approach. The analysis from X-ray photoelectron spectroscopy indicates that the manganese doped in CeO2 exists as Mn2+. The magnetic measurement of the Mn-doped CeO2 nanorods exhibits an enhanced ferromagnetic property at room temperature with a remanence magnetization (Mr) of 1.36 × 10−3 emu/g and coercivity (Hc) of 22 Oe. Comparative UV-visible spectra reveal the shift of the absorption peak of the CeO2 from ultraviolet region to visible light region after being doped with Mn. The room temperature ferromagnetic properties and light absorption of the Mn-doped CeO2 nanorods would have potential applications in photocatalysis and building of photovoltaic devices.  相似文献   

7.
Utilizing the raw materials of TiOSO4, NaOH, NH4NO3 and RDX, the TiO2 ultrafine particles were prepared under high pressure and high temperature by detonation method. The structure, composition and size distribution of the TiO2 ultrafine particles were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicated the as-prepared TiO2 ultrafine particles exhibited spherical-like grains and that the average size of particles was 25 ± 5 nm. After being heated at 700 °C for 1 h, TiO2 particles have entirely completed the anatase-rutile phase transition, which means that detonation method can effectively enhance the anatase-rutile phase transition by lowering the transition temperature. The size of TiO2 nanoparticles can be effectively controlled because the as-prepared nanoparticles do not have enough time to grow to large and perfect crystallites during the detonation process.  相似文献   

8.
Ce3+-activated yttrium aluminum garnet (Y3Al5O12:Ce, YAG:Ce) powder as luminescent phosphor was synthesized by the solid-state reaction method. The phase identification, microstructure and photoluminescent properties of the products were investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), absorption spectrum and photoluminescence (PL) analysis. Spherical phosphor particle is considered better than irregular-shaped particle to improve PL property and application, so this phosphor was granulated into a sphere-like shape by a spray-drying device. After calcinating at 1500 °C for 0, 4, and 8 h, the product was identified as YAG and CeO2 phases. The CeO2 phase content is decreased by increasing the calcination time or decreasing the Ce3+ doping content. The product showed higher emission intensity resulted from more Ce3+ content and larger grain size. The product with CeO2 was found to have lower emission intensity. This paper presents the crystal structures of Rietveld refinement results of powder XRD data.  相似文献   

9.
Cerium oxide (CeO2) nanoparticles have been synthesized through composite-hydroxide-mediated approach. The X-ray powder diffraction (XRD) measurement proved that the pure cubic CeO2 could be obtained at a low temperature region (170-220 °C). The particle size, micrograph morphology and microstructure were investigated by transmission electron microscope (TEM) and environmental scanning electron microscope (ESEM). The conductivity of as-synthesized CeO2 was measured by a standard four-probe method. The conductivity of CeO2 increases slightly with the increase of temperature. And the conductivity increases rapidly to 0.02418 s cm− 1 at 830 °C. The product is a potential material for intermediate temperature solid oxide fuel cells (ITSOFC).  相似文献   

10.
Formation of NiFe2O4 nanoparticles by mechanochemical reaction   总被引:1,自引:0,他引:1  
Preparation of nanosized NiFe2O4 particles by mechanochemical reaction(NiO+α-Fe2O3) and subsequent thermal treatment was investigated using X-ray diffraction (XRD). Thermal treatment of the as-milled powder at 700 °C for 1 h led to the formation of NiFe2O4 nanoparticles with an average crystal size of about 23 nm. Effect of thermal treatment temperature on the crystal size of the nanoparticles was studied. The mechanism of nanoparticles growth was primarily discussed. The activation energy of NiFe2O4 nanoparticle formation during calcination was calculated to be 16.6 kJ/mol.  相似文献   

11.
In this paper, ABO3-type perovskite LaFeO3 nanosized photocatalysts were synthesized by a sol-gel method, using citric acid (HOOCCH2C(OH)(COOH)CH2COOH) as complexing reagent and La(NO3)3·6H2O and Fe (NO3)3·9H2O as raw materials. The as-prepared samples also were characterized by several testing techniques, such as thermogravimetry-differential thermal analysis (TG-DTA), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET), infrared spectrum (IR), ultraviolet-visible diffuse reflection spectrum (UV-vis DRS), photoluminescence spectrum (PL), surface photovoltage spectroscopy (SPS) and electrical field induced surface photovoltage spectroscopy (EFISPS). The sample activity of different LaFeO3 nanoparticles for degrading Rhodamine B solution under visible irradiation (λ > 400 nm) was evaluated. The effects of thermal treatment temperature on photoinduced charge property and photocatalytic activity were mainly investigated, together with their relationships. The results show that the LaFeO3 sample calcined at 500 °C exhibits higher activity, and the activity decreases with increasing calcination temperature, which is in good agreement with the characterization results. The weaker is the PL and SPS signal, the higher is the photocatalytic activity. Moreover, the activity of all as-prepared LaFeO3 samples is higher than that of international P-25 TiO2 under visible irradiation.  相似文献   

12.
Nano-composites of CeO2-CeAlO3 are synthesised by solution combustion method employing (a) urea and (b) a mixture of urea and glycine as fuels with corresponding metal nitrates. The as-prepared powders are all nano-sized (5-30 nm) and the same is confirmed by broadening of the X-ray diffraction peaks and transmission electron microscopy. A starting composition of Ce:Al in the atomic ratio 4:6 gives rise to different phases depending on the fuel being used for combustion. When urea alone is used as fuel, nano-crystalline CeO2 phase is formed with Al2O3 being in the amorphous state. When the mixture of fuels is used, a mixture of nano-sized CeO2 and CeAlO3 phases is obtained. However, upon sintering at 1400 ° C in air, the stable phases CeO2 and -Al2O3 are formed in both the cases. Combustion synthesis using mixture-of-fuels is proposed to be a route to stabilise low oxidation compounds such as CeAlO3.  相似文献   

13.
In this article, antimony-doped tin oxide (ATO) nanoparticles was synthesized by a facile polymer-pyrolysis method. The pyrolysis behaviors of the polymer precursors prepared via in situ polymerization of metal salts and acrylic acid were analyzed by simultaneous thermogravimetric and differential scanning calorimetry (TG-DSC). The structural and morphological characteristics of the products were studied by powder X-ray diffraction (XRD) and transmission electron microscope (TEM). The results reveal that the ATO nanoparticles calcined at 600 °C show good crystallinity with the cassiterite structure and cubic-spherical like morphology. The average particle size of ATO decreases from 200 to 15 nm as the Sb doping content increases from 5 mol% to 15 mol%. Electrical resistivity measurement shows that the resistivity for the 10-13 mol% Sb-doped SnO2 nanoparticles is reduced by more than three orders compared with the pure SnO2 nanoparticles. In addition, due to its versatility this polymer-pyrolysis method can be extended to facile synthesis of other doped n-type semiconductor, such as In, Ga, Al doped ZnO, Sn doped In2O3.  相似文献   

14.
ZnS nanoparticles of various morphologies, including hollow or solid spherical, and polyhedral shape, were synthesized from single-source precursor Zn(S2COC2H5)2 without using a surfactant or template. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy. The results indicate that ZnS hollow and solid spheres assembled by nanoparticles can be easily generated by the solution phase thermalysis of Zn(S2COC2H5)2 at 80 °C using N, N-dimethylformamide (DMF) and ethylene glycol (EG) or water as solvents, respectively, whereas solvothermal process of the same precursor led to ZnS nanoparticles of polyhedral shape with an average size of 120 nm. The optical properties of these ZnS nanostructures were investigated by room-temperature luminescence and UV-vis diffuse reflectance spectra.  相似文献   

15.
Size tuneable cadmium sulphide nanoparticles of a few nanometres in size were prepared by thermolysis of a single source precursor of cadmium xanthates with variable carbon chain length (Cd(ROCS2)2, where R denotes -C2H5, -C4H9, -C8H17 and -C12H25, respectively) in an ammonia solution. The particle size, morphology and crystallinity of these nanoparticles were characterized using X-ray powder diffractometry, transmission electron microscopy, and nitrogen adsorption/desorption techniques. The results show that hexagonal CdS nanoparticles can be produced by thermolysis of cadmium alkyl xanthate in an ammonia solution at a temperature as low as 100 °C. The size of CdS particles (between 5.60 nm and 3.71 nm) decreases with increasing length of carbon chain in the precursor, as further confirmed by UV-visible and fluorescence spectrophotometric measurements. The size tuning mechanism of CdS from cadmium alkyl xanthate is also discussed.  相似文献   

16.
The surfactant-assisted hydrothermal route was used to prepare fractal dendrite cerium carbonate hydroxide (CeOHCO3) microstructures. After annealing at 600 °C for 4 h, the products were transformed to CeO2. The crystal structures of the two compounds were determined by X-ray diffraction (XRD). The morphologies and microstructures were characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Room temperature photoluminescence (PL) showed that a strong ultraviolet emission at 336 nm was observed for CeOHCO3, and that centered at 415 nm for CeO2 microstructures. Both of these emission peaks are different from those reported for CeOHCO3 and CeO2 with other shapes. In addition, the possible growth mechanism of dendrite CeOHCO3 microstructures and the role of surfactant polyvinyl pyrrolidone (PVP) were also investigated in this paper.  相似文献   

17.
Transparent glass nanocomposite in the pseudo binary system (100 − x) Li2B4O7xBaTiO3 with x = 0 and 60 (in mol%) were prepared. Amorphous and glassy characteristics of the as-prepared samples were established via X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) respectively. The precipitated BaTiO3 nanocrystal phase embedded in the glass sample at x = 60 mol% was identified by transmission electron microscopic (TEM). The optical transmission bands at 598 and 660 nm were assigned to Ti3+ ions in tetragonal distorted octahedral sites. The precipitated Li2B4O7, BaTi(BO3)2 and BaTiO3 nanocrystallites phases with heat-treatment at 923 K for 6 h (HT923) in glass–ceramic were identified by XRD, TEM and infrared absorption spectroscopy. The as-prepared at x = 60 mol% and the HT923 samples exhibit broad dielectric anomalies in the vicinity of the ferroelectric-to-paraelectric transition temperature. The results demonstrate that the method presented may be an effective way to fabricate ferroelectric host and development of multifunctional ferroelectrics.  相似文献   

18.
Synthesis of leucite crystals below 1000 °C using natural kaolin as the primary raw material was investigated. Spherical leucite crystals having a diameter of approximately 50 μm were prepared by heating a powder mixture of Al2(SO4)3, kaolin and K2SO4 (in mass ratios of 3:3:15) at 900 °C for 3 h. Quartz, the main accessory phase in kaolin, and the amorphous metakaolin formed upon heating kaolin were found to be responsible for the decreased synthesis temperature.  相似文献   

19.
Hydrothermal process was successfully used to synthesize Fe3O4 powder using ferrous chloride (FeCl2) and diamine hydrate (H4N2·H2O) as starting materials by carefully controlling the reaction conditions. The as-prepared Fe3O4 sample was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and its magnetic properties were evaluated on a vibrating sample magnetometer (VSM). The nanoscale (40 nm) Fe3O4 powder obtained at 140 °C for 6 h possessed a saturation magnetization of 85.8 emu/g, a little lower than that of the correspondent bulk Fe3O4 (92 emu/g). It is suggested that the well-crystallized Fe3O4 grains formed under appropriate hydrothermal conditions should be responsible for the increased saturation magnetization in nanosized Fe3O4.  相似文献   

20.
Calcium doped CeO2 nanoparticles with doping concentrations between 0 and 50 mol% were synthesized by a co-precipitation method for ultraviolet filtration application. Below 20 mol% doping concentration, the samples were single-phase. From 30 mol%, CaCO3 appears as a secondary phase. The calculated CeO2 mean crystallite size was 9.3 nm for the pure and 5.7 nm for the 50 mol% Ca-doped sample. Between 250 and 330 nm, the absorbance increased for the 10, 30, and 40 mol% Ca-doped samples compared to the pure one. The band-gap was found to be 3.20 eV for the undoped, and between 3.36 and 3.51 eV for the doped samples. The blue shifts are attributed to the quantum confinement effect. X-ray photoelectron spectroscopy showed that the Ce3+ atomic concentration in the pure sample was higher than that of the 20 mol% Ca-doped sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号