首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Chemical preparation, crystal structure and NMR spectroscopy of a new organic cation 5-chloro(2,4-dimethoxy)anilinium monophosphate H2PO4 are given. This new compound crystallizes in the monoclinic system, with the space group P21/c and the following parameters: a = 5.524(2) Å, b = 9.303(2) Å, c = 23.388(2) Å, β = 90.66(4), V = 1201.8(2) Å3, Z = 4 and Dx = 1.573 g cm−3. Crystal structure has been determined and refined to R = 0.031 and Rw = 0.080 using 1702 independent reflections. Structure can be described as an infinite (H2PO4)nn corrugated chains in the a-direction. The organic groups (5-Cl-2,4-(OCH3)2C6H2NH3)+ are anchored between adjacent polyanions through multiple hydrogen bonds. This compound is also investigated by IR, thermal, and solid-state, 13C, 31P MAS NMR spectroscopies.  相似文献   

2.
The organically templated (C4H12N2)[FeIIFeIII(HPO3)2F3] compound has been synthesized under mild solvothermal conditions. The crystal structure has been determined from X-ray single-crystal diffraction data. The compound crystallizes in the P21/n monoclinic space group, with the unit-cell parameters a = 12.935(1), b = 6.4476(7), c = 15.693(2) Å, β = 105.630(9)° and Z = 4. The crystal structure consists of [FeIIFeIII(HPO3)2F3]2− chains formed by a central chain built of [Fe(2)O4F2] edge-sharing octahedra, and two side chains formed by alternating [Fe(1)O3F3] octahedra and [HP(1)O3] tetrahedra. The piperazinium cations are placed between the chains linked by ionic and hydrogen interactions. The IR and Raman spectra show the existence of two phosphite crystallographically independent. From the diffuse reflectance spectrum the Dq parameter for the iron(II) cations has been calculated (Dq = 820 cm−1). The Mössbauer spectrum in the paramagnetic state shows the simultaneous presence of Fe2+ and Fe3+. The magnetic measurements indicate the existence of antiferromagnetic interactions.  相似文献   

3.
A new iron(III) phosphate Na3Fe3(PO4)4 has been synthesized and characterized. It decomposes before melting at 860°C into FePO4 and Na3Fe2(PO4)3. The structure of the compound was determined by single-crystal X-ray diffraction. The unit cell is monoclinic with the following parameters: a=19.601(8) Å, b=6.387(1) Å, c=10.575(6) Å and β=91.81(4)°; Z=4; space group: C2/c. Na3Fe3(PO4)4 exhibits a layered structure involving corner-linkage between FeO6 octahedra, and corner- and edge-sharing between FeO6 octahedra and PO4 tetrahedra. The Na+ cations occupying the interlayer space are six- and seven-fold coordinated by oxygen atoms. The relationship between the structure of Na3Fe3(PO4)4 and the previous reported hydrate K3Fe3(PO4)4·H2O will be discussed.  相似文献   

4.
Crystals of RbPrHP3O10 have been grown by the flux technique and characterized by single-crystal X-ray diffraction. RbPrHP3O10 crystallizes in the triclinic space group with lattice parameters: a = 7.0655(5), b = 7.7791(4), c = 8.6828(6) Å, α = 74.074(3), β = 74.270(3), γ = 82.865(2)°, V = 441.09(5) Å3, Z = 2. The crystal structure has been solved yielding a final R(F2) = 0.0443 and Rw(F2) = 0.1426 for 1955 independent reflections (Fo2 ≥ 2σ(Fo2)). The structure of RbPrHP3O10 consists of PrO8 polyhedra and P3O105− groups sharing oxygen atoms to form a two-dimensional framework; the PrO8 polyhedra form infinite chains by edge-sharing. Each Rb+ ion is bonded to 10 oxygen atoms, these ions are located between chains formed of (HP3O10)4−. The energies of the vibrational modes of the crystal were obtained from measurements of the infrared spectrum.  相似文献   

5.
The (C3H12N2)0.94[Mn1.50Fe1.50III(AsO4)F6] and (C3H12N2)0.75[Co1.50Fe1.50III(AsO4)F6] compounds 1 and 2 have been synthesized using mild hydrothermal conditions. These phases are isostructural with (C3H12N2)0.75[Fe1.5IIFe1.5III(AsO4)F6]. The compounds crystallize in the orthorhombic Imam space group. The unit cell parameters calculated by using the patterns matching routine of the FULPROOF program, starting from the cell parameters of the iron(II),(III) phase, are: a = 7.727(1) Å, b = 11.047(1) Å, c = 13.412(1) Å for 1 and a = 7.560(1) Å, b = 11.012(1) Å, c = 13.206(1) Å for 2, being Z = 8 in both compounds. The crystal structure consists of a three-dimensional framework constructed from edge-sharing [MII(1)2O2F8] (M = Mn, Co) dimeric octahedra linked to [FeIII(2)O2F4] octahedra through the F(1) anions and to the [AsO4] tetrahedra by the O(1) vertex. This network gives rise two kinds of chains, which are extended in perpendicular directions. Chain 1 is extended along the a-axis and chain 2 runs along the c-axis. These chains are linked by the F(1) and O(1) atoms and establish cavities delimited by eight or six polyhedra along the [1 0 0] and [0 0 1] directions, respectively. The propanediammonium cations are located inside these cavities. The thermal study indicates that the structures collapse with the calcination of the organic dication at 255 and 285 °C for 1 and 2, respectively. The Mössbauer spectra in the paramagnetic state indicate the existence of two crystallographically independent positions for the iron(III) cations and a small proportion of this cation in the positions of the divalent Mn(II) and Co(II) ones. The IR spectrum shows the protonated bands of the H2N- groups of the propanediamine molecule and the characteristic bands of the [AsO4]3− arsenate oxoanions. In the diffuse reflectance spectra, it can be observed the bands characteristic of trivalent iron(III) cation and divalent Mn(II) and Co(II) ones in a distorted octahedral symmetry. The calculated Dq and B-Racah parameters for the cobalt(II) phase are 710 and 925 cm−1, respectively. The ESR spectra of compound 1 maintain isotropic with variation in temperature, being g = 1.99. Magnetic measurements for both compounds indicate that the main magnetic interactions are antiferromagnetic in nature. However, at low temperatures small ferromagnetic components are detected, which are probably due to a spin decompensation of the two different metallic cations. The hysteresis loops give values of the remnant magnetization and coercive field of 84.5, 255 emu/mol and 0.01, 0.225 T for phases 1 and 2, respectively.  相似文献   

6.
A lithium bismuth phosphate, Li2Bi14.67(PO4)6O14, has been synthesized for the first time by the solid-state method. The crystal structure was determined by single crystal X-ray diffraction at 150 K. Li2Bi14.67(PO4)6O14 crystallizes in the monoclinic system C2/c (No. 15), with a = 30.8189(4) Å, b = 5.2691(3) Å, c = 24.5302(3) Å, β = 122.84(2)°, V = 3346.81(1) Å3 and Z = 2. The structure along the b axis consists of layers of [Bi2O2] units as the basic building block. These are separated by isolated PO4 and LiO4 tetrahedra. The oxygen co-ordination around two of the phosphorus atoms is disordered. Solid-state 7Li NMR studies confirm the presence of lithium in the structure. The material shows ionic conductivity of the order of 10−5 S cm−1 at 600 °C.  相似文献   

7.
A new lithium cobalt metaphosphate, LiCo(PO3)3, is reported for the first time, which was discovered during the exploratory synthesis in Li-Co-P-O system by solid state reaction. The structure has been refined by powder X-ray Rietveld refinement method (P212121, a = 8.5398(2) Å, b = 8.6326(2) Å and c = 8.3520(2) Å, Z = 4, Rp = 13.6%, Rwp = 19.4%, Rexp = 17.7%, S = 1.11, χ2 = 1.23). It is isostructural with LiM(PO3)3 (M = Fe, Cu). It contains (PO3)1− chains with the Co atoms localized in the octahedral sites, bridging four neighboring chains. The magnetic susceptibility measurement showed a typical paramagnetic behavior of high spin of Co2+, following the Curie-Weiss law in the temperature range of 5-300 K. Unlike the olivine type lithium cobalt phosphate, LiCoPO4, cyclic voltammetry of LiCo(PO3)3 assembled in the coin-type cell showed no electrochemical activity in the voltage region of 1-5 V versus Li/Li+.  相似文献   

8.
Chemical preparation, crystal structure, calorimetric and spectroscopic investigations (IR and RMN) are given for a new non-centrosymmetric organic-cation dihydrogen phosphate-arsenate [H2(C4H10N2)][H2(As, P)O4]2. This compound is triclinic P1 with the following unit-cell parameters: a = 7.082(2) Å, b = 7.796(1) Å, c = 12.05(3) Å, α = 95.37(2)°, β = 98.38(3)°, γ = 62.98(1)°, Z = 2, V = 586.2(1) Å3 and Dx = 1.836 g cm−3. The crystal structure has been solved and refined to R = 0.03 using 2328 independent reflections. The structure can be described as infinite (H2XO)n chains spreading parallel to the b direction. These chains are themselves interconnected by a set of NH?O hydrogen bonds generated by the organic entities, alternating with the chains. Solid-state 13C, 15N and 31P MAS NMR spectroscopies are in agreement with the X-ray structure.  相似文献   

9.
Potassium manganese(III) monohydrogentriphosphate KMnHP3O10 was synthesized by flux method and characterized by single-crystal X-ray diffraction, crystallizes in the monoclinic system with centric space group C2/c. The parameters of the unit cell are a = 12.104(1), b = 8.287(1). c = 9.150(1) Å, β = 110.97(1)° and Z = 4. The structure was solved at 296 K using 893 independent reflections and refined until R(F) = 0.022; wR(F2) = 0.045. The atomic arrangement of the title compound consists of MnO6 octahedra linked by hydrogentriphosphate anions to form a three-dimensional framework containing tunnels parallel to the c-axis where the K+ cations are inserted. The structure of KMnHP3O10 contains a single Mn site which is surrounded by typical Jahn-Teller [2 + 2 + 2] distorted octahedron. The title material has been also characterized by different physico-chemical techniques: powder X-ray diffraction, IR, NMR and CI spectroscopies and DTA-TGA-DSC thermal analysis.  相似文献   

10.
Chemical preparation, crystal structure, calorimetric, and spectroscopic investigations are given for a new organic-cation dihydrogenomonophosphate, (4-C2H5C6H4NH3)H2PO4 in the solid state. This compound crystallizes in the orthorhombic space group Pbca with the following unit cell parameters: a=8.286(3) Å, b=9.660(2) Å, c=24.876(4) Å, Z=8, V=1991.2(7) Å3, and DX=1.442 g cm−3. Crystal structure was solved with a final R=0.054 for 3305 independent reflections. The atomic arrangement coaled described as H2PO4 layers between which are located the 4-ethylanilinium cations.  相似文献   

11.
Crystals of KDyP4O12 have been grown by the flux technique and characterized by single-crystal X-ray diffraction. KDyP4O12 crystallizes in the monoclinic C2/c space group with lattice parameters: a=7.8158(3), b=12.3401(5), c=10.4382(3) Å, β=111.053°(2), V=939.6(4) Å3, Z=4. The crystal structure has been refined yielding a final R(F2)=0.034 and Rw(F2)=0.082 for 902 independent reflections (Fo2≥2σ(Fo2)). The structure of KDyP4O12 consists of DyO8 polyhedra and cyclotetraphosphate P4O12 groups sharing oxygen atoms to form a three-dimensional framework, delimiting intersecting tunnels in which the potassium ion is located. Each K+ ion is bonded to 10 oxygen atoms. The energies of the vibrational modes of the crystal were obtained from measurements of the infrared and Raman spectra.  相似文献   

12.
Chemical preparation, X-ray characterization, IR spectroscopy and thermal analysis of a new cyclotriphosphate: (C7H10NO)3P3O9·4H2O abbreviated as OACTP, are reported. This mixed organo-mineral compound crystallizes in the monoclinic system with P21/n space group, the unit cell dimensions are: a = 6.605(3) Å, b = 26.166(3) Å, c = 18.671(8) Å, β = 91.95(3)°, Z = 4 and V = 3255(2) Å3. The structure was solved using a direct method and refined to a reliability R-factor of 0.043 using 3931 independent reflections (I > 2σI). Atomic arrangement exhibits infinite (P3O9·2H2O)n3n chains connected by organic cations. The thermal behavior and the IR spectroscopic studies of this new compound are discussed.  相似文献   

13.
Cobalt ethylenediammonium bis(sulfate) tetrahydrate, [NH3(CH2)2NH3][Co(SO4)2(H2O)4], has been synthesised by slow evaporation at room temperature. It crystallises in the triclinic system, space group , with the unit cell parameters: a = 6.8033(2), b = 7.0705(2), c = 7.2192(3) Å, α = 74.909(2)°, β = 72.291(2)°, γ = 79.167(2)°, Z = 1 and V = 317.16(2) Å3. The Co(II) atom is octahedrally coordinated by four water molecules and two sulfate tetrahedra leading to trimeric units [Co(SO4)2(H2O)4]. These units are linked to each other and to the ethylenediammonium cations through OW-H…O and N-H…O hydrogen bonds, respectively. The zero-dimensional structure is described as an alternation between cationic and anionic layers along the crystallographic b-axis. The dehydration of the precursor proceeds through three stages leading to crystalline intermediary hydrate phases and an anhydrous compound. The magnetic measurements show that the title compound is predominantly paramagnetic with weak antiferromagnetic interactions.  相似文献   

14.
Eu3+-doped triple phosphate Ca8MgR(PO4)7 (R = La, Gd, Y) was synthesized by the general high temperature solid-state reaction. This phosphor was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and emission spectra. XRD and FT-IR analysis indicated that Ca8MgR(PO4)7 (R = La, Gd, Y) crystallized in single-phase component with whitlockite-like structure (space group R3c) of β-Ca3(PO4)2. Under the excitation of UV light, the phosphors show bright red emission assigned to the transition (5D0 → 7F2) at 612 nm. The crystallographic sites of Eu3+ ions in Ca8MgR(PO4)7 (R = La, Gd, Y) host were discussed on the base of site-selective excitation and emission spectra, luminescence decay and its host crystal structure.  相似文献   

15.
The family of titanium Nasicon-phosphates of generic formula M0.5IITi2(PO4)3 has been revisited using hydrothermal techniques. Two phases have been synthesized: Mn0.5IITi2(PO4)3 (MnTiP) and Co0.5IITi2(PO4)3 (CoTiP). Single crystal diffraction studies show that they exhibit two different structural types. Mn0.5IITi2(PO4)3 phosphate crystallizes in the R-3 space group, with the cell parameters a = 8.51300(10) Å and c = 21.0083(3) Å (V = 1318.52(3) Å3 and Z = 6). The Co0.5IITi2(PO4)3 phosphate crystallizes in the R-3c space group, with a = 8.4608(9) Å and c = 21.174(2) Å (V = 1312.7(2) Å3 and Z = 6). These two compounds are clearly related to the parent Nasicon-type rhombohedral structure, which can be described using [Ti2(PO4)3] framework composed of two [TiO6] octahedral interlinked via three [PO4] tetrahedra. 31P magic-angle spinning nuclear magnetic resonance (MAS-NMR) data are presented as supporting data. Curie-Weiss-type behavior is observed in the magnetic susceptibility. The phases are also characterized by IR spectroscopy and UV-visible.  相似文献   

16.
A new iron phosphonate-oxalate [Fe(O3PCH3)(C2O4)0.5(H2O)] (1), has been synthesized under hydrothermal condition. The single-crystal X-ray diffraction studies reveal that 1 consists of layers of vertex-linked FeO6 octahedra and O3PC tetrahedra, which are further connected by bis-chelate oxalate bridges, giving to a 3D structure with 10-membered channels. Crystal data: monoclinic, P21/n (no. 14), a = 4.851(2) Å, b = 16.803(7) Å, c = 7.941(4) Å, β = 107.516(6)°, V = 617.2(5) Å3, Z = 4, R1 = 0.0337 and wR2=0.0874 for 1251 reflections [I > 2σ(I)]. Mössbauer spectroscopy measurement confirms the existence of high-spin Fe(III) in 1. Magnetic studies show that 1 exhibits weak ferromagnetism with TN = 30 K due to a weak spin canting.  相似文献   

17.
A new titanium oxyphosphate Mg0.50TiO(PO4) has been synthesized and characterized by several physical techniques: X-ray diffraction, 31P MAS-NMR, Raman diffusion, infrared absorption and diffuse reflectance spectroscopy. It crystallizes in the monoclinic system with unit cell parameters: a = 7.367(9), b = 7.385(8), c = 7.373(9) Å, β = 120.23(1), with the space group P21/c (no. 14), Z = 4. The crystal structure has been refined by the Rietveld method using X-ray powder diffraction. The conventional R indices obtained are Rwp = 0.138, Rp = 0.096 and RB = 0.0459. The structure of Mg0.50TiO(PO4) consists of infinite chains of corner-shared [TiO6] octahedra parallel to the c-axis, crosslinked by corner-shared [PO4] tetrahedra. These infinite chains have alternating short (1.74 Å) and long (2.26 Å) TiO bonds and are similar to those found in titanium oxyphosphate MII0.50TiO(PO4) (M2+ = Fe2+, Co2+, Ni2+, Cu2+, Zn2+). The magnesium atom is located in an antiprism between two [TiO6] octahedra. 31P MAS NMR showed only a single 31P resonance line, in a good agreement with the crystal structure. Raman and IR spectra show strong bands respectively at 765 and 815 cm−1, attributed to the vibration of TiOTiO bonds in the infinite chains. The gap due to the Oxygen-Titanium(IV) charge transfer is 3.37 eV.  相似文献   

18.
The LiPO3-Y(PO3)3 system has been studied for the first time. Microdifferential thermal analysis (μ-DTA), infrared spectroscopy (IR) and X-ray diffraction were used to investigate the liquidus and solidus relations. The only new compound observed within this system is LiY(PO3)4, melting incongruently at 1104 K. An eutectic appears at 4±1 mol% Y(PO3)3 at 933 K. LiY(PO3)4 crystallizes in the monoclinic system C2/c with a unit cell: a=16.201(4) Å, b=7.013(2) Å, c=9.573(2) Å, β=125.589(9)°, Z=4 and V=884.5 Å3, which is isostructural to LiNd(PO3)4. The infrared absorption spectrum indicates that this salt is a chain polyphosphate.  相似文献   

19.
The CoxNi1−x(SeO3)·2H2O (x = 0, 0.4, 1) family of compounds has been hydrothermally synthesized under autogeneous pressure and characterized by elemental analysis, infrared and UV-vis spectroscopies and thermogravimetric and thermodiffractometric techniques. The crystal structure of Co0.4Ni0.6(SeO3)·2H2O has been solved from single-crystal X-ray diffraction data. This phase is isostructural with the M(SeO3)·2H2O (M = Co and Ni) minerals and crystallizes in the P21/n space group, with a = 6.4681(7), b = 8.7816(7), c = 7.5668(7) Å, β = 98.927(9)° and Z = 4. The crystal structure of this series of compounds consists of a three-dimensional framework formed by (SeO3)2− selenite oxoanions and edge-sharing M2O10 dimeric octahedra in which the metallic cations are coordinated by the oxygens belonging to both the selenite groups and water molecules. The diffuse reflectance spectra show the essential characteristics of Co(II) and Ni(II) cations in slightly distorted octahedral environments. The calculated values of the Dq and Racah (B and C) parameters are those habitually found for the 3d7 and 3d8 cations in octahedral coordination. The magnetic measurements indicate the existence of antiferromagnetic interactions in all the compounds. The magnetic exchange pathways involve the metal orbitals from edge-sharing dimeric octahedra and the (SeO3)2− anions which are linked to the M2O10 polyhedra in three dimensions.  相似文献   

20.
Tantalum hydrogen phosphate, β-TaH(PO4)2, has a three-dimensional structure that is stable to remarkably high temperature (∼600 °C) presumably due to the presence of strong hydrogen bonds. Impedance measurements indicate a low conductivity, 2.0 × 10−6 S/cm at 200 °C in 5% H2. In further studies aimed at enhancing the conductivity by aliovalent doping, we have investigated systematically the synthesis of compounds in the TaH(PO4)2-W2P2O11 system at 380 °C. As a result, a new phase, Ta2(WO2)0.87H0.26(PO4)4, was identified and subsequently the molybdenum analog Ta2(MoO2)(PO4)4 was also prepared. The structures were determined by single crystal X-ray diffraction techniques. The structures of Ta2(WO2)0.87H0.26(PO4)4 and Ta2(MoO2)(PO4)4 can be formally derived from the structure of β-TaH(PO4)2 by the replacement of two P-OH protons with an MO22+ (M = Mo and W) group together with a change in the orientation of some phosphate tetrahedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号