首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
使用新型YAP:Ce无机晶体配大线性电流光电倍增管组成闪烁探测系统,采用散射法将60Co源(约2.2×1014 Bq)散射为单能γ射线,实验测量探测器系统的γ射线灵敏度,并结合计算机数值模拟计算对数据进行分析处理。新型YAP:Ce无机晶体对γ射线的灵敏度相对较高,是同体积CeF3晶体的10倍多。采用YAP:Ce无机晶体比CeF3晶体更有利于γ射线测量。   相似文献   

2.
无机闪烁探测器综述   总被引:2,自引:0,他引:2  
主要介绍了无机闪烁探测器的发展和现状.包括对常用无机闪烁晶体NaI(Tl)、CsI(Na)、CsI(Tl)、CsI(Pure)、BaF2、BGO、CdWO4、GSO:Ce和YAP:Ce等的密度、等效原子序数、衰减时间、光输出、发射光谱、能量分辨率、温度特性、辐射性能、加工性能等方面的介绍,以及对Ce3 掺杂的新型闪烁体的特性及发展前景的介绍.旨在为读者选择、使用无机闪烁晶体提供一份参考.  相似文献   

3.
采用化学腐蚀光学显微法和同步辐射截面形貌术研究了三硼酸锂(LBO)晶体的生长缺陷,实验结果表明,LBO晶体中的主要缺陷是位错、包裹物和扇形界。讨论了这些缺陷形成的原因和降低缺陷的措施。  相似文献   

4.
利用同步X光透射形貌技术,研究了液封直拉(LEC)、水平布里支曼(HB)、垂直梯度凝固(VGF)三种生长技术制备的Φ2"晶片的位错缺陷。发现LEC晶体中缺陷明显高于HB、VGF晶体,VGF缺陷缺陷最低,HB晶体居于两之间。结合生长界面温度梯度和杂质掺入水平,讨论了位错分布差异的原因。  相似文献   

5.
采用正电子湮没寿命谱方法,对空间微重力及重力条件下生长的碲镉汞材料中的微观缺陷进行了研究。结果表明,在空间微重力条件下生长的MCT晶体中,其空位型缺陷浓度低于地球上有重力条件下生长的晶体,并且缺陷浓度沿轴向的分布比较均匀。  相似文献   

6.
使用进口的新型YAP:Ce无机晶体和近年国内研制的CeF3,PbWO4配大线性电流光电倍增管组成闪烁探测器系统,用^60Co和^137Csγ源实验测量探测系统的γ射线灵敏度;并用MCNP/4B程序进行建模计算;最后对理论计算和实测数据进行了比较,分析研究。得出结论:新型YAP:Ce无机晶体对γ射线的灵敏度相对较高,对^60Co源和^137Cs源γ射线而言,是同体积的CeF2晶体的10倍多,利于γ射线测量。  相似文献   

7.
研究KTiOAsO4晶体的生长缺陷,对于改善它的性能和应用前景,有很大的意义。本利用化学腐蚀光学显微术和同步辐射X射线形貌术研究了KTiOAsO4晶体的缺陷,实验结果表明,两种腐蚀剂对于显示KTA晶体的表面缺陷效果显,KTA晶体中主要的缺陷有铁电畴、生长层、扇形界、位错和包裹物。讨论了这些缺陷形成的原因。  相似文献   

8.
报道了用同步辐射X射线白光形貌术和光学显微法研究由助熔剂籽晶旋转法生长的LNP晶体的生长缺陷。本除对晶体中的包裹物和位错缺陷等进行了详细观察描述外,还发现了一种比较奇特的腐蚀沟槽。最后分析了这些缺陷的成因和克服办法。  相似文献   

9.
LiNdP4O12(LNP)晶体是一种新型的激光材料。本报道了用同步辐射X射线白光形貌术和光学显微法研究由助熔剂籽晶旋转法生长的LNP晶体的生长缺陷,观察到了圆形生长台阶及精细的系列台阶结构,对晶体中的包裹物和位错缺陷等进行了详细的观察描述,还发现了一种比较奇特的腐蚀沟槽,分析了这种腐蚀沟槽的形成机理及各种缺陷的成因和克服办法。  相似文献   

10.
应用同步辐射X射线形貌术对坩埚下降法生长的Nd:SGG晶体的缺陷进行了研究。观察到该晶体中存在较为明显的镶嵌结构晶界缺陷和位错缺陷,并分析了上述缺陷的形成原因。对提高Nd:SGG晶体质量、改进生长工艺具有一定的参考价值。  相似文献   

11.
The Anger camera principle has shown a practical limit of a few millimeters spatial resolution. To overcome this limit, a new gamma camera prototype has been developed, based on a position-sensitive photomultiplier tube (PSPMT) coupled with a new scintillation crystal. The Hamamatsu R2486 PSPMT is a 76-mm diameter photomultiplier tube in which the electrons produced in the conventional bi-alkali photocathode are multiplied by proximity mesh dynodes and form a charge cloud around the original coordinates of the light photon striking the photocathode. A crossed wire anode array collects the charge and detects the original position. The intrinsic spatial resolution of PSPMT is better than 0.3 mm. The scintillation crystal consists of yttrium aluminum perovskit (YAP:Ce or YAlO3:Ce). This crystal has a light efficiency of about 38% relative to NaI, no hygroscopicity and a good gamma radiation absorption. To match the characteristics of the PSPMT, a special crystal assembly was produced by the Preciosa Company, consisting of a bundle of YAP:Ce pillars where single crystals have 0.6×0.6 mm2 cross section and 3 mm to 18 mm length. Preliminary results from such gamma camera prototypes show spatial resolution values ranging between 0.7 mm and 1 mm with an intrinsic detection efficiency of 37÷65% for 140 keV gamma energy  相似文献   

12.
To enhance the detective quantum efficiency (DQE) of scintillation electron detectors for scanning electron microscopes or scanning transmission electron microscopes (S(T)EM), the cathodoluminescence (CL) decay kinetics of YAG:Ce single crystal scintillators is studied in this paper. Some possibilities for reductions of decay time and afterglow of the mentioned scintillators are presented. The pulse mode utilizing a blanking system and 10 keV electrons for the excitation and a sampling oscilloscope for the CL detection were used for the measurement of decay characteristics. The CL decay characteristics of YAG:Ce single crystals of different Ce concentrations, pulled by the Czochralski method and cleaned and annealed under specific conditions, were measured in dependence on excitation pulse duration and on the specimen temperature. To interpret the presented results, a kinetic model of cathodoluminescence of the YAG:Ce single crystals was created. The effects of quenching impurities and of defect centers in YAG:Ce were specified.  相似文献   

13.
The detector system used at the first focus of the BigSol superconducting solenoid beam line at the Texas A & M superconducting cyclotron is presented. The system is composed of a position sensitive PPAC followed by an ionization chamber (IC) with a YAP(Ce) array in its back plane. The position sensitivity of the PPAC as well the energy resolution of the IC is investigated as a function of the counting rate. Pulse height, pulse height resolution and time resolution of the YAP(Ce) crystals are studied for a variety of heavy ion beams ranging from 20Ne to 197Au at energies from 15 AMeV to 40 AMeV. The pulse shape discrimination method using a Flash ADC is also explored, in order to identify decay products (alpha particles and electron/gamma) from the fragments implanted in the scintillator.  相似文献   

14.
对(100)取向的MgO单晶进行了不同剂量的60Coγ射线辐照,辐照剂量从30 kGy到1 750 kGy。利用同步辐射漫散射技术以及紫外-可见吸收光谱研究了辐照样品的点缺陷情况,并将实验测量的漫散射结果与理论计算结果进行比对,以获得点缺陷组态的信息。利用超导量子干涉仪(Superconducting Quantum Interference Device,SQUID)测量了样品在不同温度下的磁性质。漫散射和吸收光谱的实验结果表明,经γ射线辐照的MgO单晶产生了阴离子弗伦克尔缺陷,并在室温下没有表现出铁磁性,只是在低温下观察到了顺磁信号,且辐照前后样品在零场冷却和加场冷却下的M-T曲线没有变化,说明阴离子空位没有导致MgO的d0铁磁性。  相似文献   

15.
LYSO:Ce and LuYAP:Ce are single crystal non-hygroscopic scintillators of high density, high light yield and short decay time, which have been successfully used in small animal PET imagers. In the present study, the luminescence emission properties of (Lu0.9, Y0.1)2SiO5:Ce (LYSO:Ce) and (Lu0.7, Y0.3)AIO3:Ce (LuYAP:Ce) crystals were investigated for use in X-ray medical imaging. Both crystals had dimensions of 2 times 2 times 8 mm3, with all surfaces polished. Evaluation was performed by determining the X-ray luminescence efficiency (XLE) (emitted light energy flux over incident X-ray energy flux) and the detector optical gain (DOG) (emitted light photons per incident x-ray photon) in a wide range of X-ray energies employed in mammography (22-49 kVp) and in general X-ray imaging (50-140 kVp). Measurements were performed using an experimental set-up based on a photomultiplier coupled to an integration sphere. The emission spectrum under X-ray excitation was measured using an optical grating monochromator to determine the spectral compatibility to various optical photon detectors incorporated in medical imaging detectors. Optical characteristics such as transmission and absorption spectra were investigated in addition to the scintillation properties. The light emission performance of the two scintillation materials studied was found adequately high for X-ray imaging.  相似文献   

16.
Radioluminescence (RL) and thermoluminescence (TL) in spinel crystals and ceramics were investigated to elucidate the radiation-induced electronic processes in single crystals grown by Verneuil and Czochralski methods as well as transparent and translucent ceramics. Both RL and TL spectra demonstrate a UV-band related to electron–hole recombination luminescence at intrinsic defects; green and red luminescence are identified with emission of Mn2+- and Cr3+-ions, respectively. The kinetics of growth of different RL luminescence bands depending on dose at the prolonged X-irradiation shows the competitive character of charge and energy transfer between defects and impurity ions. The dependence of RL intensity on the temperature of the sample was measured in the range of 300–750 K and compared with TL for different emission bands. The variety of maxima in the temperature dependence of RL and in the glow curves of TL measured for different luminescence bands in spinels of different origins and crystalline forms is used to show that charge carrier traps and luminescence centers are not isolated defects but are complexes of defects and impurities. The formation, structure and properties of these complexes depend on the processing conditions.  相似文献   

17.
The YAP Camera represents refined research instrument in nuclear medicine and pharmacology because of its overall detection efficiency comparable to an Anger Camera and its submillimeter intrinsic spatial resolution. The YAP Camera consists of a YAP:Ce multicrystal matrix, whose pillars dimensions are 0.6 mm×0.6 mm×10 mm, optically coupled with a position sensitive PMT Hamamatsu R2486 and furnished with a parallel hole lead collimator 20 mm thick with holes diameter of 0.5 mm and septa of 0.15 mm. At this stage it is a miniature camera, with a field of view (FOV) of 40 mm×40 mm and a total spatial resolution of 1.0-1.2 mm, currently used for radiotracers studies on small biological specimens. A detailed analysis of the detector position linearity and energy responses are presented in this work. The intrinsic spatial resolution is studied with three different single hole collimators (1.0, 0.3, and 0.2 mm), and a theoretical equation is presented. Three different parallel hole collimators are tested to evaluate the optimal hole and septa dimensions. Finally, it is demonstrated that two correction procedures are capable of recovering the image spatial homogeneity and of removing the statistical noise. Some phantom images show the importance of the small-field YAP Camera in the radiopharmacological research  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号