首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
徐进 《工具技术》2009,43(5):28-30
在高速硬态切削过程中,涂层刀具高速切削失效形态分为非正常磨损(破损)与正常磨损两种。刀具非正常磨损失效发生在低速切削时,而高速切削过程中的刀具失效形式倾向于后刀面磨损、边界磨损和切削刃斜面磨损等多种一常磨损彤式的组合。本文通过涂层刀具高速车削45#钢的试验,研究了刀具磨损对工件表面质量的影响。试验表明:提高切削速度,工件已加工表面质量并未随刀具磨损情况加剧而呈线性下降,刀具磨损对已加工表面质量负面影响作用的减轻,使表面质量在一定程度上得到了改善。  相似文献   

2.
选用不同涂层刀具进行高速切削300M钢试验,利用工具显微镜和电子扫描显微镜(SEM)观察刀具磨损形貌,并利用线扫描进行元素扩散分析,揭示刀具失效机理。研究结果表明:金属陶瓷基涂层刀具高速切削时,切削速度不宜超过240m/min;硬质合金基涂层刀具可在300m/min以上高速切削300M钢,其中CVD-Ti CNAl2O3厚涂层的高速切削性能更高,切屑塑形变形较小;涂层刀具切削300M钢的主要磨损形式是前刀面磨损和后刀面磨损,涂层剥落、崩刃、微裂纹、粘结磨损、磨粒磨损、氧化磨损、扩散磨损是刀具失效的主要原因。  相似文献   

3.
金刚石涂层刀具高速铣削石墨的磨损形态与破损机理   总被引:2,自引:0,他引:2  
钟启茂 《工具技术》2009,43(6):36-39
通过对比切削试验,分析了金刚石涂层刀具高速铣削石墨时的磨损形态与过程,论述了金刚石涂层刀具的破损原因与失效机理,为金刚石涂层刀具在高速切削领域的推广应用提供了实用的依据。  相似文献   

4.
硬质合金刀具高速车铣和铣削TC4钛合金磨损试验对比   总被引:1,自引:0,他引:1  
石莉  姜增辉 《工具技术》2017,51(7):36-38
采用H13A未涂层硬质合金刀具对TC4钛合金进行高速正交车铣和铣削试验,并从刀具磨损破损形态、磨损机理及其寿命等方面进行对比分析。研究表明:高速正交车铣和铣削钛合金时,前、后刀面主要以粘结磨损为主,车铣加工时在切削刃口易形成积屑瘤及连续切屑,但对刀具材料粘结较轻;高速铣削时,对刀具材料粘接较重,在前刀面刃口附近形成凹坑及崩刃;后刀面最大磨损的位置不相同。试验对比了相同切削条件时刀具使用寿命,结果表明采用正交车铣加工可以获得更长的刀具使用寿命。  相似文献   

5.
对金刚石刀具、涂层刀具及硬质合金刀具车削纯钒时刀具磨损形态及其磨损机理进行观察和分析.结果表明,在所选取条件下,不同刀具材料对工件材料切削时表现出的刀具磨损形态主要为前刀面磨损、后刀面磨损、微崩刃、剥落和粘结等.刀具的前刀面主要是沿切屑流出方向的沟槽形月牙洼磨损,而后刀面以粘结磨损为主.CD10刀具和H10非涂层刀具具有较佳的切削性能,而H13A非涂层刀具和GC1025涂层刀具不适于纯钒车削.  相似文献   

6.
对PCBN刀具车削铸造高温合金K423A进行了切削试验研究及有限元仿真研究,观察和分析了刀具的磨损/破损形态,并从应力场和温度场分布的角度对刀具的失效机理进行了深入分析。在四种不同的切削条件下,主切削刃的失效形式主要为刀具材料的剥落和粘结磨损;在切削速度60m/min时,PCBN刀具容易发生破损;随着切削速度的增加,副切削刃的磨损/破损带宽度减小。切削速度的提高引起切削温度的增加,使得工件材料的强度降低,同时刀具脆性降低而韧性增加,这是副后刀面破损减少的可能原因之一。采用修正的莫尔理论对有限元仿真结果中刀具复杂的应力状态进行分析,推断了刀具材料破坏的起始位置。  相似文献   

7.
研究奥氏体高锰钢切削过程中TiN涂层硬质合金刀具的磨损、破损机制,测量了切削温度并得出后刀面磨损量与 切削时间和切削速度的关系曲线,以及刀具前、后刀面显微磨损、破损形貌和化学变化。结果表明,TiN涂层硬质合金刀 具切削奥氏体高锰钢时耐磨性优于单一硬质合金刀具,且适于低速切削(小于30m/min)。  相似文献   

8.
针对AISI 4340合金结构钢难加工的特点,选用PVD硬质合金涂层刀具进行高速干铣削试验,选用扫描电子显微镜(SEM)观察失效刀具表面的磨损形貌特征,选用能谱分析仪(EDS)分析磨损刀具表面的元素分布及含量,揭示刀具的磨损机理。研究结果表明:刀具寿命与切削参数选取有关,随着切削速度的增加,刀具磨损加快,刀具寿命降低。硬质合金涂层刀具的主要磨损形式是前刀面磨损和后刀面磨损,前刀面磨损机理主要是粘结磨损、涂层剥落、切削刃微崩刃;后刀面磨损机理主要是磨粒磨损、粘结磨损、扩散磨损、微裂纹。  相似文献   

9.
利用涂层硬质合金刀具对Inconel 718进行了高速干切削试验,采用扫描电子显微镜SEM和能量分散光谱EDS扫描,对不同切削参数下刀具的损坏形态和损坏机理进行了研究。分析结果表明刀具损坏形式主要有前刀面磨损、后刀面磨损、剥落和崩刃。刀具损坏机理主要是粘结磨损、磨粒磨损、氧化磨损和扩散磨损等。  相似文献   

10.
高速铣削航空铝合金7050-T7451时刀具的磨损破损   总被引:9,自引:0,他引:9  
分析涂层硬质合金刀具高速铣削航空铝合金7050-T7451时的磨损、破损形态,通过正交试验研究了高速铣削航空铝合金的铣削力及其变化规律,提出模拟高速铣削刀具裂纹萌生的脉冲激光热冲击试验方法,研究铣削力和热应力在刀具磨损、破损过程中的不同作用.试验和理论分析证明:高速铣削航空铝合金7050-T7451时,热应力使刀具萌生裂纹,裂纹在热应力和机械应力综合作用下扩展.研究刀具失效机理,证明:高速铣削航空铝合金时,粘结磨损和扩散磨损是主要磨损机理.提出通过提高切削系统稳定性和优化切削参数,可以有效降低机械应力对刀具的冲击作用,并在生产现场收到良好的效果.  相似文献   

11.
The present work deals with some machinability studies on flank wear, surface roughness, chip morphology and cutting forces in finish hard turning of AISI 4340 steel using uncoated and multilayer TiN and ZrCN coated carbide inserts at higher cutting speed range. The process has also been justified economically for its effective application in hard turning. Experimental results revealed that multilayer TiN/TiCN/Al2O3/TiN coated insert performed better than uncoated and TiN/TiCN/Al2O3/ZrCN coated carbide insert being steady growth of flank wear and surface roughness. The tool life for TiN and ZrCN coated carbide inserts was found to be approximately 19 min and 8 min at the extreme cutting conditions tested. Uncoated carbide insert used to cut hardened steel fractured prematurely. Abrasion, chipping and catastrophic failure are the principal wear mechanisms observed during machining. The turning forces (cutting force, thrust force and feed force) are observed to be lower using multilayer coated carbide insert in hard turning compared to uncoated carbide insert. From 1st and 2nd order regression model, 2nd order model explains about 98.3% and 86.3% of the variability of responses (flank wear and surface roughness) in predicting new observations compared to 1st order model and indicates the better fitting of the model with the data for multilayer TiN coated carbide insert. For ZrCN coated carbide insert, 2nd order flank wear model fits well compared to surface roughness model as observed from ANOVA study. The savings in machining costs using multilayer TiN coated insert is 93.4% compared to uncoated carbide and 40% to ZrCN coated carbide inserts respectively in hard machining taking flank wear criteria of 0.3 mm. This shows the economical feasibility of utilizing multilayer TiN coated carbide insert in finish hard turning.  相似文献   

12.
Titanium alloys are difficult-to-machine materials because of their poor machinability characteristics. Machining and machining performance evaluation for such materials is still a challenge. Individual machining performance indices like cutting forces, cutting energy and tool wear lead to ambiguous understanding. In this work, a Cumulative Performance Index (CPI) is defined which amalgamates non-dimensional forms of specific cutting energy, back force and average principal flank wear in turning. The CPI focuses upon simultaneous minimization of specific cutting energy, dimensional deviation and average principal flank wear. The defined index is then used to evaluate performance of five commercially available physical vapor deposited (PVD) TiAlN coated tungsten carbide/cobalt inserts vis-à-vis uncoated tungsten carbide/cobalt insert in turning of Ti-6Al-4V. Cutting forces were monitored during turning and tool wear was measured after turning experiments. The results showed that the performance of coated inserts was either comparable or poor than uncoated insert; and in no case, coated inserts performed better than uncoated insert. Although commercial recommendations are in place to use PVD coated inserts for enhanced machinability of titanium alloys, the use of coated inserts is not justified keeping in view the energy spent in coating and insignificant improvement in performance.  相似文献   

13.
通过对钛合金TC4、TC11和Ti-5553的切削试验,对比分析Ti-5553加工过程中切削速度对切削力和刀具磨损的影响。试验结果表明:随着切削速度增大,切削钛合金TC4和TC11的切削力呈现不同程度的先增后减趋势,而钛合金Ti-5553的切削力呈缓慢增大的趋势;在相同切削速度下,Ti-5553的主切削力和吃刀抗力均高于TC4和TC11;通过超景深、扫描电镜和能谱分析仪对刀具磨损部位进行观察与分析发现,切削Ti-5553的刀具磨损量最大,随着切削速度的增大,刀具的后刀面磨损量增加,刀具主要磨损形式为粘结磨损,刀具后刀面出现沟槽磨损,刀具出现破损。  相似文献   

14.
High-speed milling tests were carried out on Ti–6Al–4V titanium alloy with a polycrystalline diamond (PCD) tool. Tool wear morphologies were observed and examined with a digital microscope. The main tool failure mechanisms were discussed and analyzed utilizing scanning electron microscope, and the element distribution of the failed tool surface was detected using energy dispersive spectroscopy. Results showed that tool flank wear rate increased with the increase in cutting speed. The PCD tool is suitable for machining of Ti–6Al–4V titanium alloy with a cutting speed around 250 m/min. The PCD tool exhibited relatively serious chipping and spalling at cutting speed higher than 375 m/min, within further increasing of the cutting speed the flank wear and breakage increased greatly as a result of the enhanced thermal–mechanical impacts. In addition, the PCD tool could hardly work at cutting speed of 1,000 m/min due to the catastrophic fracture of the cutting edge and intense flank wear. There was evidence of workpiece material adhesion on the tool rake face and flank face in very close proximity to the cutting edge rather than on the chipped or flaked surface, which thereby leads to the accelerating flank wear. The failure mechanisms of PCD tool in high-speed wet milling of Ti–6Al–4V titanium alloy were mainly premature breakage and synergistic interaction among adhesive wear and abrasive wear.  相似文献   

15.
In recent years, hard machining using CBN and ceramic inserts became an emerging technology than traditional grinding and widely used manufacturing processes. However the relatively high cost factors associated with such tools has left a space to look for relatively low cost cutting tool materials to perform in an acceptable range. Multilayer coated carbide insert is the proposed alternative in the present study due to its low cost. Thus, an attempt has been made to have an extensive study on the machinability aspects such as flank wear, chip morphology, surface roughness in finish hard turning of AISI 4340 steel (HRC 47 ± 1) using multilayer coated carbide (TiN/TiCN/Al2O3/TiN) insert under dry environment. Parametric influences on turning forces are also analyzed. From the machinability study, abrasion and chipping are found to be the dominant wear mechanism in hard turning. Multilayer TiN coated carbide inserts produced better surface quality and within recommendable range of 1.6 μm i.e. comparable with cylindrical grinding. At extreme parametric conditions, the growth of tool wear was observed to be rapid thus surface quality affected adversely. The chip morphology study reveals a more favorable machining environment in dry machining using TiN coated carbide inserts. The cutting speed and feed are found to have the significant effect on the tool wear and surface roughness from ANOVA study. It is evident that, thrust force (Fy) is the largest component followed by tangential force (Fz) and the feed force (Fx) in finish hard turning. The observations yield the machining ability of multilayer TiN coated carbide inserts in hard turning of AISI 4340 steel even at higher cutting speeds.  相似文献   

16.
Tool wear and machining performance of hardened AISI M2 steel in hard turning has been studied. Ceramic tools were used in the cutting tests without coolants, and the workpiece was heat treated to increase its hardness up to Re 60. Cutting forces, temperature, and tool wear were measured in the experiments and the effects of cutting conditions on these were investigated. Important aspects from the research are summarized as follows: 1. Flank wear was the dominant wear mode on the ceramic tool insert in hard turning. In contrast, crater wear was very small due to the ceramics high resistance against chemical reactions at high temperature. A notch was unlikely to be formed in the tool.

2. The initial flank wear rate mainly depends on the feed rate. High feed rates cause a high initial flank wear rate.

3. Depth of cut was the most important cutting parameter to affect cutting force variation, and the cutting force increased due to tool wear.

  相似文献   

17.
The present work deals with a comparative study on flank wear, surface roughness, tool life, volume of chip removal and economical feasibility in turning high carbon high chromium AISI D2 steel with multilayer MTCVD coated [TiN/TiCN/Al2O3/TiN] and uncoated carbide inserts under dry cutting environment. Higher micro hardness of TiN coated carbide samples (1880 HV) compared to uncoated carbide (1430 HV) is observed and depicts better resistance against abrasion. The low erosion rate was observed in TiN coated insert compared to uncoated carbide. The tool life of TiN coated insert is found to be approximately 30 times higher than the uncoated carbide insert under similar cutting conditions and produced lower surface roughness compared to uncoated carbide insert. The dominant wear mechanism was found to be abrasion and progression of wear was steady using multilayer TiN coated carbide insert. The developed regression model shows high determination coefficient i.e. R2 = 0.977 for flank wear and 0.94 for surface roughness and accurately explains the relationship between the responses and the independent variable. The machining cost per part for uncoated carbide insert is found to be 10.5 times higher than the multilayer TiN coated carbide inserts. This indicates 90.5% cost savings using multilayer TiN coated inserts by the adoption of a cutting speed of 200 m/min coupled with a tool feed rate of 0.21 mm/rev and depth of cut of 0.4 mm. Thus, TiN coated carbide tools are capable of reducing machining costs and performs better than uncoated carbide inserts in machining D2 steel.  相似文献   

18.
基于任意拉格朗日欧拉方法(ALE)建立金属正交切削加工的热力耦合的有限元模型,获得不同速度下切削稳定时涂层刀具前后刀面的接触应力、剪应力以及温度场。通过对涂层刀具施加已获得的刀具表面的应力场和温度场,分析了不同速度下摩擦分界点变化的规律以及对涂层基体界面应力的影响。结果表明,随着速度的增大,摩擦分界点逐渐有向前刀面移动的趋势,表明磨损的方式开始从后刀面磨损向前刀面月牙湾磨损转变,这与切削试验结果一致。同时随着速度的增大,涂层界面应力突变更加显著,表明高速条件下涂层更容易破坏,且速度越高,前刀面涂层破坏的几率越大。  相似文献   

19.
This paper reports an experimental study of flank wear on TiN- and TiAlN-coated carbide tools in the turning of AISI 1045, AISI 4135, ductile cast iron, and Inconel 718, and it was conducted with the purpose of showing the relationship between the change in wear rate and the loss of coating layer on the cutting edge. It was found that the relation between cutting distance and flank wear in log-log scale clearly shows the change in wear rate, thus providing a straightforward way to determine the relation between worn out coating layer and increase in wear rate. This relation was confirmed by analyzing the presence of coating layer before and after the inflection point appears by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) photographs. It was observed that the coating layer on the flank face is worn away and finally is worn out. However, even if the layer on the flank face is worn out, tool wear is suppressed as long as the coating layer on the cutting edge exists. On the other hand, when the coating layer on the cutting edge is worn out, the wear resistance of the tool depends on the substrate; thus, the wear rate increases. According to the results, as the cutting speed increases, the change in wear rate appears in a shorter cutting distance, making flank wear to be high. High pressure and high temperature act on the rake face; thus, thermal stability of the coating layer in the cutting edge is important. A low cutting speed decreases cutting efficiency, but a high cutting speed causes flank wear to be high; therefore, in order to optimize machining cost, an acceptable cutting speed, from the standpoint of tool wear, should be selected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号