首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Burned area is a critical input to the algorithms of biomass burning emissions and understanding variability in fire activity due to climate change but it is difficult to estimate. This study presents a robust algorithm to reconstruct the patterns in burned areas across Contiguous United States (CONUS) in diurnal, seasonal, and interannual scales from 2000-2006. Specifically, burned areas in individual fire pixels are empirically calculated using diurnal variations in instantaneous fire sizes from the Geostationary Operational Environmental Satellites (GOES) WF_ABBA (Wildfire Automated Biomass Burning Algorithm) fire product. GOES burned areas exhibit diurnal variability with a temporal scale of half hours. The cumulative burned area during 9:00-16:00 local solar time accounts for 65%-81% of the total daily burned area. The diurnal variability is strongest in croplands compared to shrublands, grasslands, savannas, and forests. Analysis on a seasonal scale indicates that over 56% of burning occurs during summer (June-August). On average, the total annual burned area during the last seven years is 2.12 × 104 ± 0.41 × 104 km2. The algorithm developed in this study can be applied to obtain burned area from the detections of GOES active fires at near real time, which can greatly improve the estimates of biomass burning emissions needed for predicting air quality.  相似文献   

2.
Recent advances in instrument design have led to considerable improvements in wildfire mapping at regional and global scales. Global and regional active fire and burned area products are currently available from various satellite sensors. While only global products can provide consistent assessments of fire activity at the global, hemispherical or continental scales, the efficiency of their performance differs in various ecosystems. The available regional products are hard-coded to the specifics of a given ecosystem (e.g. boreal forest) and their mapping accuracy drops dramatically outside the intended area. We present a regionally adaptable semi-automated approach to mapping burned area using Moderate Resolution Imaging Spectroradiometer (MODIS) data. This is a flexible remote sensing/GIS-based algorithm which allows for easy modification of algorithm parameterization to adapt it to the regional specifics of fire occurrence in the biome or region of interest. The algorithm is based on Normalized Burned Ratio differencing (dNBR) and therefore retains the variability of spectral response of the area affected by fire and has the potential to be used beyond binary burned/unburned mapping for the first-order characterization of fire impacts from remotely sensed data. The algorithm inputs the MODIS Surface Reflectance 8-Day Composite product (MOD09A1) and the MODIS Active Fire product (MOD14) and outputs yearly maps of burned area with dNBR values and beginning and ending dates of mapping as the attributive information. Comparison of this product with high resolution burn scar information from Landsat ETM+ imagery and fire perimeter data shows high levels of accuracy in reporting burned area across different ecosystems. We evaluated algorithm performance in boreal forests of Central Siberia, Mediterranean-type ecosystems of California, and sagebrush steppe of the Great Basin region of the US. In each ecosystem the MODIS burned area estimates were within 15% of the estimates produced by the high resolution base with the R2 between 0.87 and 0.99. In addition, the spatial accuracy of large burn scars in the boreal forests of Central Siberia was also high with Kappa values ranging between 0.76 and 0.79.  相似文献   

3.
The results of the first consecutive 12 months of the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) global burned area product are presented. Total annual and monthly area burned statistics and missing data statistics are reported at global and continental scale and with respect to different land cover classes. Globally the total area burned labeled by the MODIS burned area product is 3.66 × 106 km2 for July 2001 to June 2002 while the MODIS active fire product detected for the same period a total of 2.78 × 106 km2, i.e., 24% less than the area labeled by the burned area product. A spatio-temporal correlation analysis of the two MODIS fire products stratified globally for pre-fire leaf area index (LAI) and percent tree cover ranges indicate that for low percent tree cover and LAI, the MODIS burned area product defines a greater proportion of the landscape as burned than the active fire product; and with increasing tree cover (> 60%) and LAI (> 5) the MODIS active fire product defines a relatively greater proportion. This pattern is generally observed in product comparisons stratified with respect to land cover. Globally, the burned area product reports a smaller amount of area burned than the active fire product in croplands and evergreen forest and deciduous needleleaf forest classes, comparable areas for mixed and deciduous broadleaf forest classes, and a greater amount of area burned for the non-forest classes. The reasons for these product differences are discussed in terms of environmental spatio-temporal fire characteristics and remote sensing factors, and highlight the planning needs for MODIS burned area product validation.  相似文献   

4.
Recent advances in sensor technology have led to the development of new hyper-spectral instruments capable of measuring reflected radiation over a wide range of wavelengths. These instruments can be used to assess the diverse characteristics of vegetation recovery that are only noticeable in certain parts of the electromagnetic spectrum. In this research, such instruments were used to study vegetation recovery following a forest fire in a Mediterranean ecosystem. The specific event occurred in an area called El Rodenal of Guadalajara (in Central Spain) between 16 and 21 July 2005. Remotely sensed hyper-spectral multitemporal data were used to assess the forest vegetation response following the fire. These data were also combined with remotely sensed fire severity data and satellite high temporal resolution data. Four Airborne Hyperspectral Scanner (AHS) hyper-spectral images, 361 Moderate Resolution Imaging Spectroradiometer (MODIS) images, field data, and ancillary information were used in the analysis. The total burned area was estimated to be 129.4 km2. AHS-derived fire severity level-of-damage assessments were estimated using the normalized burn ratio (NBR). Post-fire vegetation recovery was assessed according to a spectral unmixing analysis of the AHS hyper-spectral images and the normalized difference vegetation index (NDVI), as calculated from the MODIS time series. Combining AHS hyper-spectral images with field data provides reliable estimates of burned areas and fire severity levels-of-damage. This combination can also be used to monitor post-fire vegetation recovery trends. MODIS time series were used to determine the types and rates of vegetation recovery after the fire and to support the AHS-based estimates. Data and maps derived using this method may be useful for locating priority intervention areas and planning forest restoration projects.  相似文献   

5.
The paper evaluated the accuracy of classifying Land Cover-Land Use (LCLU) types and assessed the trends of their changes from Principal Components (PC) of Land satellite (Landsat) images. The accuracy of the image classification of LCLU was evaluated using the confusion matrices and assessed with cross-referencing of samples of LCLU types interpreted and classified from System Pour l’Observation de la Terre (SPOT) images and topographical map. LCLU changes were detected, quantified, and statistically analysed. The interpretation error of the composite image of Landsat Enhanced Thematic Mapper Plus (Landsat ETM+) (2006) was high compared with that from the PC image of Landsat ETM+ (2006). From 1986 – 2006 the area covered by settlements increased by 0.8% (230,380.00 km2), agricultural land decreased by 7.5% (1009.40 km2), vegetation cover decreased by 0.9% (114.00 km2) while waterbody increased by 0.2% (25.91 km2). Also, from 1986 – 2006 the average annual rates of change in the area of settlements was 6.7%. Agricultural land and bare land showed fluctuations of change rates from 6.7% and 5.0% annually in 1986 and 2006 respectively. The quantitative evidences of LCLU changes revealed the growth of settlements. The conversions of land from agriculture to urban land represent the most significant land cover changes. The rate of change was as high as 4.8% for settlements while agricultural lands were converted at 5.0% per year. The Principal Component Analysis (PCA) of the Landsat images and supervised classification method used made it possible to classify and determine the area of LCLU classes from the set of Landsat images without prior depiction and delimitation of individual LCLU type. It permitted the measurement of area of each LCLU class at a high accuracy level and kept the level of error relatively constant. The PCA analysis in this study affirms the previous research findings. Future research works should focus on the use of remotely sensed images with high temporal and spatial resolutions such as Quick Bird and SPOT 6 to develop effective and accurate LCLU change mapping and monitoring at the local scale.

The PCA technique has been used quite widely to study changes in land cover and land use in many ‘developed’ countries but much still needs to be done in developing and undeveloped countries where land cover and land use change is poorly mapped and knowledge of such changes is very important for planning development of the country.  相似文献   


6.
Fire is an important natural disturbance process in many ecosystems, but humans can irrevocably change natural fire regimes. Quantifying long-term change in fire regimes is important to understand the driving forces of changes in fire dynamics, and the implications of fire regime changes for ecosystem ecology. However, assessing fire regime changes is challenging, especially in grasslands because of high intra- and inter-annual variation of the vegetation and temporally sparse satellite data in many regions of the world. The breakdown of the Soviet Union in 1991 caused substantial socioeconomic changes and a decrease in grazing pressure in Russia's arid grasslands, but how this affected grassland fires is unknown. Our research goal was to assess annual burned area in the grasslands of southern Russia before and after the breakdown. Our study area covers 19,000 km2 in the Republic of Kalmykia in southern Russia in the arid grasslands of the Caspian plains. We estimated annual burned area from 1985 to 2007 by classifying AVHRR data using decision tree algorithm, and validated the results with RESURS, Landsat and MODIS data. Our results showed a substantial increase in burned area, from almost none in the 1980s to more than 20% of the total study area burned in both 2006 and 2007. Burned area started to increase around 1998 and has continued to increase, albeit with high fluctuations among years. We suggest that it took several years after livestock numbers decreased in the beginning of the 1990s for vegetation to recover, to build up enough fuel, and to reach a threshold of connectivity that could sustain large fires. Our burned area detection algorithm was effective, and captured burned areas even with incomplete annual AVHRR data. Validation results showed 68% producer's and 56% user's accuracy. Lack of frequent AVHRR data is a common problem and our burned area detection approach may also be suitable in other parts of the world with comparable ecosystems and similar AVHRR data limitations. In our case, AVHRR data were the only satellite imagery available far enough back in time to reveal marked increases in fire regimes in southern Russia before and after the breakdown of the Soviet Union.  相似文献   

7.
A minimum cardiorespiratory fitness standard was derived for firefighters following a metabolic demands analysis. Design and minimal acceptable performance of generic firefighting task simulations (i.e. hose running, casualty evacuation, stair climb, equipment carry, wild-land fire) were endorsed by a panel of operationally experienced experts. Sixty-two UK firefighters completed these tasks wearing a standard protective firefighting ensemble while being monitored for peak steady-state metabolic demand and cardiovascular strain. Four tasks, endorsed as valid operational simulations by ≥90% of participants (excluding wild-land fire; 84%), were deemed to be a sufficiently valid and reliable basis for a fitness standard. These tasks elicited an average peak steady-state metabolic cost of 38.1 ± 7.8 ml kg?1 min?1. It is estimated that healthy adults can sustain the total duration of these tasks (~16 min) at ≤90% maximum oxygen uptake and a cardiorespiratory fitness standard of ≥42.3 ml kg?1 min?1 would be required to sustain work.

Practitioner Summary: A cardiorespiratory fitness standard for firefighters of ≥42.3 ml kg?1 min?1 was derived from monitoring minimum acceptable performance of essential tasks. This study supports the implementation of a routine assessment of this fitness standard for all UK operational firefighters, to ensure safe physical preparedness for occupational performance.  相似文献   


8.
Improved wildland fire emission inventory methods are needed to support air quality forecasting and guide the development of air shed management strategies. Air quality forecasting requires dynamic fire emission estimates that are generated in a timely manner to support real-time operations. In the regulatory and planning realm, emission inventories are essential for quantitatively assessing the contribution of wildfire to air pollution. The development of wildland fire emission inventories depends on burned area as a critical input. This study presents a Moderate Resolution Imaging Spectroradiometer (MODIS) - direct broadcast (DB) burned area mapping algorithm designed to support air quality forecasting and emission inventory development. The algorithm combines active fire locations and single satellite scene burn scar detections to provide a rapid yet robust mapping of burned area. Using the U.S. Forest Service Fire Sciences Laboratory (FiSL) MODIS-DB receiving station in Missoula, Montana, the algorithm provided daily measurements of burned area for wildfire events in the western U.S. in 2006 and 2007. We evaluated the algorithm's fire detection rate and burned area mapping using fire perimeter data and burn scar information derived from high resolution satellite imagery. The FiSL MODIS-DB system detected 87% of all reference fires > 4 km2, and 93% of all reference fires > 10 km2. The burned area was highly correlated (R2 = 0.93) with a high resolution imagery reference burn scar dataset, but exhibited a large over estimation of burned area (56%). The reference burn scar dataset was used to calibrate the algorithm response and quantify the uncertainty in the burned area measurement at the fire incident level. An objective, empirical error based approach was employed to quantify the uncertainty of our burned area measurement and provide a metric that is meaningful in context of remotely sensed burned area and emission inventories. The algorithm uncertainty is ± 36% for fires 50 km2 in size, improving to ± 31% at a fire size of 100 km2. Fires in this size range account for a substantial portion of burned area in the western U.S. (77% of burned area is due to fires > 50 km2, and 66% results from fires > 100 km2). The dominance of these large wildfires in burned area, duration, and emissions makes these events a significant concern of air quality forecasters and regulators. With daily coverage at 1-km2 spatial resolution, and a quantified measurement uncertainty, the burned area mapping algorithm presented in this paper is well suited for the development of wildfire emission inventories. Furthermore, the algorithm's DB implementation enables time sensitive burned area mapping to support operational air quality forecasting.  相似文献   

9.
Accurate production of regional burned area maps are necessary to reduce uncertainty in emission estimates from African savannah fires. Numerous methods have been developed that map burned and unburned surfaces. These methods are typically applied to coarse spatial resolution (1 km) data to produce regional estimates of the area burned, while higher spatial resolution (<30 m) data are used to assess their accuracy with little regard to the accuracy of the higher spatial resolution reference data. In this study we aimed to investigate whether Landsat Enhanced Thematic Mapper (ETM+)‐derived reference imagery can be more accurately produced using such spectrally informed methods. The efficacy of several spectral index methods to discriminate between burned and unburned surfaces over a series of spatial scales (ground, IKONOS, Landsat ETM+ and data from the MOderate Resolution Imaging Spectrometer, MODIS) were evaluated. The optimal Landsat ETM+ reference image of burned area was achieved using a charcoal fraction map derived by linear spectral unmixing (k = 1.00, a = 99.5%), where pixels were defined as burnt if the charcoal fraction per pixel exceeded 50%. Comparison of coincident Landsat ETM+ and IKONOS burned area maps of a neighbouring region in Mongu (Zambia) indicated that the charcoal fraction map method overestimated the area burned by 1.6%. This method was, however, unstable, with the optimal fixed threshold occurring at >65% at the MODIS scale, presumably because of the decrease in signal‐to‐noise ratio as compared to the Landsat scale. At the MODIS scale the Mid‐Infrared Bispectral Index (MIRBI) using a fixed threshold of >1.75 was determined to be the optimal regional burned area mapping index (slope = 0.99, r 2 = 0.95, SE = 61.40, y = Landsat burned area, x = MODIS burned area). Application of MIRBI to the entire MODIS temporal series measured the burned area as 10 267 km2 during the 2001 fire season. The char fraction map and the MIRBI methodologies, which both produced reasonable burned area maps within southern African savannah environments, should also be evaluated in woodland and forested environments.  相似文献   

10.
Remote-sensing methods for fire severity mapping have traditionally relied on multispectral imagery captured by satellite platforms carrying passive sensors such as Landsat Thematic Mapper /Enhanced Thematic Mapper Plus or Moderate Resolution Imaging Spectroradiometer. This article describes the analysis of high spatial resolution Unmanned Aerial Vehicle (UAV) imagery to assess fire severity on a 117 ha experimental fire conducted on coal mine rehabilitation in an open woodland environment in semi-arid Central Queensland, Australia. Three band indices, Excess Green Index, Excess Green Index Ratio, and Modified Excess Green Index, were used to derive differenced (d) fire severity maps from UAV data. Fire severity data sets derived from aerial photograph interpretation were used to assess the utility of employing UAV technology to determine fire severity impacts. The dEGI was able to separate high severity, low severity, and unburnt areas with an overall classification accuracy of 58% and Kappa statistic of 0.37; outperforming the dEGIR (overall accuracy 55%, Kappa 0.31) and the dMEGI (overall accuracy 38%, Kappa 0.06). Classification accuracy increased for all indices when canopy shadows were masked, with dEGI improving to an overall accuracy of 68% and 0.48 Kappa. The McNemar’s test indicated that there was no significant difference between the classification accuracies for dEGI and dEGIR (p < 0.05). The test also demonstrated that dMEGI was significantly lower in accuracy compared to dEGI and dEGIR (p < 0.05). We quantified the proportion of burnt area within each severity class and calculated that 32% of the site was burnt at high severity, 34% was burnt at low severity, and 34% of the block was unburnt due to the patchy nature of the fire. We discuss the UAV-specific errors associated with fire severity mapping, and the potential for UAVs to assist land managers to assess the extent and severity of fire and subsequent recovery of burnt ecosystems at local scales (104m2–1 km2).  相似文献   

11.
Maps of burned area have been obtained from an automatic algorithm applied to a multitemporal series of Landsat TM/ETM+ images in two Mediterranean sites. The proposed algorithm is based on two phases: the first one intends to detect the more severely burned areas and minimize commission errors. The second phase improves burned patches delimitation using a hybrid contextual algorithm based on logistic regression analysis, and tries to minimize omission errors. The algorithm was calibrated using six study sites and it was validated for the whole territory of Portugal (89,000 km2) and for Southern California (70,000 km2). In the validation exercise, 65 TM/ETM+ scenes for Portugal and 35 for California were used, all from the 2003 fire season. A good agreement with the official burned area perimeters was shown, with kappa values close to 0.85 and low omission and commission errors (< 16.5%). The proposed algorithm could be operationally used for historical mapping of burned areas from Landsat images, as well as from future medium resolution sensors, providing they acquire images in two bands of the Short Wave Infrared (1.5-2.2 μm).  相似文献   

12.
Currently, there is no enforcement of physical standards within Australian fire services post-recruitment, possibly leading to inappropriate fitness and body composition. This study evaluated the impacts of ageing on physical standards of Australian firefighters. Seventy-three firefighters from three different 10-year age groups [25–34 years (n = 27), 35–44 years (n = 27), 45–54 years (n = 19)] volunteered for physical testing using dual-energy X-ray analysis and existing fitness tests used for recruitment by an Australian fire service. Older (45–54 years) participants demonstrated significantly poorer physical standards compared with younger participants including cardiovascular fitness (p < 0.05), strength (p = 0.001) and simulated operational power testing tasks (p < 0.001). Age-related body composition changes were also observed independent of body mass index. Minimum recruitment standards and fitness programs need to account for age-related declines in physical capabilities to ensure that the minimum standard is maintained regardless of age.

Practitioner Summary: Using dual-energy X-ray analysis and established fitness testing protocols, this study aimed to gain an appreciation of the current standards of body composition and fitness of Australian firefighters and the effects of ageing on their physical abilities post-recruitment. The study demonstrated a significant decline in physical standards due to age.  相似文献   


13.
We evaluated the potential of two novel thermally enhanced Landsat Thematic Mapper (TM)‐derived spectral indices for discriminating burned areas and for producing fire perimeter data (as a potential surrogate to digital fire atlas data) within two wildland fires (1985 and 1993) in ponderosa pine (Pinus ponderosa) forests of the Gila Wilderness, New Mexico, USA. Image‐derived perimeters (manually produced and classified from an index image) were compared to fire perimeters recorded within a digitized fire atlas. For each fire, the highest spectral separability was achieved using the newly proposed Normalized Burn Ratio‐Thermal (NBRT1) index (M = 1.18, 1.76, for the two fires respectively). Correspondence between fire atlas and manually digitized fire perimeters was high. Landsat imagery may be a useful supplement to existing historical fire perimeters mapping methods, but the timing of the post‐fire image will strongly influence the separability of burned and unburned areas.  相似文献   

14.
Testing a MODIS Global Disturbance Index across North America   总被引:4,自引:0,他引:4  
Large-scale ecosystem disturbances (LSEDs) have major impacts on the global carbon cycle as large pulses of CO2 and other trace gases from terrestrial biomass loss are emitted to the atmosphere during disturbance events. The high temporal and spatial variability of the atmospheric emissions combined with the lack of a proven methodology to monitor LSEDs at the global scale make the timing, location and extent of vegetation disturbance a significant uncertainty in understanding the global carbon cycle. The MODIS Global Disturbance Index (MGDI) algorithm is designed for large-scale, regular, disturbance mapping using Aqua/Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) and Aqua/MODIS Enhanced Vegetation Index (EVI) data. The MGDI uses annual maximum composite LST data to detect fundamental changes in land-surface energy partitioning, while avoiding the high natural variability associated with tracking LST at daily, weekly, or seasonal time frames. Here we apply the full Aqua/MODIS dataset through 2006 to the improved MGDI algorithm across the woody ecosystems of North America and test the algorithm by comparison with confirmed, historical wildfire events and the windfall areas of documented major hurricanes. The MGDI accurately detects the location and extent of wildfire throughout North America and detects high and moderate severity impacts in the windfall area of major hurricanes. We also find detections associated with clear-cut logging and land-clearing on the forest-agricultural interface. The MGDI indicates that 1.5% (195,580 km2) of the woody ecosystems within North America was disturbed in 2005 and 0.5% (67,451 km2) was disturbed in 2006. The interannual variability is supported by wildfire detections and official burned area statistics.  相似文献   

15.
This paper describes a methodology of using data acquired by the European Meteosat and the Japanese Geostationary Meteorological Satellite (GMS) geostationary satellites to detect burned areas in different tropical environments. The methodology is based on a multiple threshold approach applied to the thermal radiance and to a spectral index specific for burned surfaces. The Simple Index for Burned Areas (SIBA), also developed in this study, makes use of the information contained in the visible and thermal InfraRed (IR) band available on the geostationary satellites, whose main advantages are the high temporal resolution and the minimal level of pre-processing required. The results obtained with Meteosat data have been evaluated comparing them with NOAA-Advanced Very High Resolution Radiometer (AVHRR) data acquired over the Central Africa forest-savannah areas. For GMS imagery, AVHRR data acquired over the woodland-savannah areas of Northern Territory in Australia have been used. Despite the very low spatial and spectral resolution of the data, accuracy assessment showed at a regional and continental scale the resulting burned area maps could be a valuable source of information for the monitoring of the fire activity and for the assessment of fire impact on tropospheric chemistry.  相似文献   

16.
This paper presents a semi-automatic methodology for fire scars mapping from a long time series of remote sensing data. Approximately, a hundred MSS images from different Landsat satellites were employed over an area of 32 100 km2 in the north-east of the Iberian Peninsula. The analysed period was from 1975 to 1993. Results are a map series of fire history and frequencies. Omission errors are 23% for burned areas greater than 200 ha while commission errors are 8% for areas greater than 50 ha. Subsequent work based on the resultant fire scars will also help in describing fire regime and in monitoring post-fire regeneration dynamics.  相似文献   

17.
The Manimahesh and Tal Glaciers are located in the Budhil fifth-order sub-basin of the Ravi, Himachal Himalaya, Northwestern Himalaya (India). These glaciers were analysed using high- (Corona KH-4A) to medium- (Landsat TM/ETM+/OLI, ASTER) spatial resolution satellite data between 1971 and 2013, along with extensive field measurements (2011–2014) of frontal changes. The results show that the Manimahesh and Tal Glaciers retreated by 157 ± 34 m (4 ± 1 m year–1) and 45 ± 34 m (1 ± 1 m year–1), respectively, whereas, the total area lost is estimated at 0.21 ± 0.01 km2 (0.005 km2 year–1) and 0.010 ± 0.003 km2 (0.0002 km2 year–1), respectively, between 1971 and 2013. The rate of retreat is significantly lower than that previously reported. Our field measurements (2011–2014) also suggest a retreating trend and validate the measured glacier changes using remotely sensed temporal data.  相似文献   

18.
The boreal forest biome is one of the largest on Earth, covering more than 14% of the total land surface. Fire disturbance plays a dominant role in boreal ecosystems, altering forest succession, biogeochemical cycling, and carbon sequestration. We used two time-series data sets of Advanced Very High Resolution Radiometer (AVHRR) Normalized Differenced Vegetation Index (NDVI) imagery for North America to analyze vegetation recovery after fire. The Canadian Forest Service Large Fire Database was used to identify the location of fires and calculate scaled NDVI statistics from the Pathfinder AVHRR Land (PAL) and the Global Inventory Modeling and Mapping Studies (GIMMS) AVHRR data sets. Unburned areas were also identified, based on interannual variability metrics, in order to reduce the effects of factors other than fire on the temporal behavior of scaled NDVI. Burned and unburned areas were stratified by ecoregion to ensure the presence of comparable land cover types and account for influences of local environmental variability. Temporal anomalies in NDVI for burned and unburned areas show the impacts of fire and the recovery of the forest to pre-burn levels, and indicate changes in variability that might be associated with vegetation compositional changes consistent with early successional species. The rate of recovery varied in the three episodic fire years on which we focused our analysis (1981, 1989, and 1995), but were consistently shorter than previous studies that emphasized the most impacted areas within fires. Temporal variability in the time series, represented by the difference of burned and unburned area anomalies, increased beyond the observed post-fire recovery period. This indicates residual effects of fire disturbance over the regrowth period, perhaps associated with early successional vegetation and increased susceptibility to drought. Distinct differences were noted between the PAL and GIMMS data sets, with evidence for systematic data processing artifacts remaining in the PAL time series.  相似文献   

19.
Due to concerns about excessive sedentary exposure for office workers, alternate work positions such as standing are being trialled. However, prolonged standing may have health and productivity impacts, which this study assessed. Twenty adult participants undertook two hours of laboratory-based standing computer work to investigate changes in discomfort and cognitive function, along with muscle fatigue, movement, lower limb swelling and mental state. Over time, discomfort increased in all body areas (total body IRR [95% confidence interval]: 1.47[1.36–1.59]). Sustained attention reaction time (β = 18.25[8.00–28.51]) deteriorated, while creative problem solving improved (β = 0.89[0.29–1.49]). There was no change in erector spinae, rectus femoris, biceps femoris or tibialis anterior muscle fatigue; low back angle changed towards less lordosis, pelvis movement increased, lower limb swelling increased and mental state decreased. Body discomfort was positively correlated with mental state. The observed changes suggest replacing office work sitting with standing should be done with caution.

Practitioner Summary: Standing is being used to replace sitting by office workers; however, there are health risks associated with prolonged standing. In a laboratory study involving 2 h prolonged standing discomfort increased (all body areas), reaction time and mental state deteriorated while creative problem-solving improved. Prolonged standing should be undertaken with caution.  相似文献   


20.
This study examined firefighters’ sleep quantity and quality throughout multi-day wildfire suppression, and assessed the impact of sleep location, shift length, shift start time and incident severity on these variables. For 4 weeks, 40 volunteer firefighters’ sleep was assessed using wrist actigraphy. Analyses revealed that the quantity of sleep obtained on fire days was restricted, and pre- and post-sleep fatigue ratings were higher, compared to non-fire days. On fire days, total sleep time was less when: (i) sleep location was in a tent or vehicle, (ii) shifts were greater than 14 h and (iii) shifts started between 05:00 and 06:00 h. This is the first empirical investigation providing objective evidence that firefighters’ sleep is restricted during wildfire suppression. Furthermore, sleep location, shift length and shift start time should be targeted when designing appropriate controls to manage fatigue-related risk and preserve firefighters’ health and safety during wildfire events.

Practitioner Summary: During multi-day wildfire suppression, firefighters’ sleep quantity was restricted, and pre- and post-sleep fatigue ratings were higher, compared to non-fire days. Furthermore, total sleep time was less when: (i) sleep occurred in a tent/vehicle, (ii) shifts were >14 h and (iii) shifts started between 05:00 and 06:00 h.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号