首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of metal‐free photocatalysts with high efficiency, stability, and broadband solar absorption is a major challenge to realize green and sustainable chemical development. Recently, metal‐free nanohybrids (BP/CN) composed of black phosphorus (BP) and polymeric carbon nitride (CN) are emerged as photocatalytic hybrids with broadband light‐harvesting capabilities and higher photocatalytic performance. Herein, the latest progress of BP/CN hybrids for multifarious photoredox reactions is summarized. The different heterojunction types of BP/CN hybrid photocatalysts, including type I, type II, and multicomponent heterojunctions, are illustrated. Furthermore, the relevant applications of BP/CN hybrid photocatalysts for photocatalytic water splitting, CO2 photoreduction, N2 fixation, H2O2 production, pollutant decomposition, and bacterial inactivation are discussed. An overview of the challenge in this area and the directions for the future is presented.  相似文献   

2.
Photocatalytic H2O2 evolution through two‐electron oxygen reduction has attracted wide attention as an environmentally friendly strategy compared with the traditional anthraquinone or electrocatalytic method. Herein, a biomimetic leaf‐vein‐like g‐C3N4 as an efficient photocatalyst for H2O2 evolution is reported, which owns tenable band structure, optimized charge transfer, and selective two‐electron O2 reduction. The mechanism for the regulation of band structure and charge transfer is well studied by combining experiments and theoretical calculations. The H2O2 yield of CN4 (287 µmol h?1) is about 3.3 times higher than that of pristine CN (87 µmol h?1), and the apparent quantum yield for H2O2 evolution over CN4 reaches 27.8% at 420 nm, which is much higher than that for many other current photocatalysts. This work not only provides a novel strategy for the design of photocatalyst with excellent H2O2 evolution efficiency, but also promotes deep understanding for the role of defect and doping sites on photocatalytic activity.  相似文献   

3.
Herein, transition metal chalcogenides of pristine cobalt sulfides are rationally designed to act as robust bifunctional photocatalysts for visible‐light‐driven water splitting for the first time. Through moderate solvothermal route, cobalt sulfides are synthesized in situ growth and observed by scanning electron microscope image analysis. Noteworthily, 3D hierarchical cobalt sulfides acting as bifunctional photocatalysts are implemented to catalyze the visible‐light‐driven oxygen evolution reaction and hydrogen evolution reaction. This efficient, earth‐abundant, and nonnoble water splitting catalyst for artificial photosynthesis is thoroughly analyzed by various spectroscopic techniques with the aim of investigating its photocatalytic mechanism under visible‐light illumination. The main catalyst of CoS‐2 exhibits considerable H2 evolution rate of 1196 µmol h?1 g?1 and O2 yield of 63.5%. The efficient activity is attributed to the effective electron transfer between the photosensitizer and catalyst, which is verified by transient absorption experiments. The effective electron transfer between the photosensitizer and catalyst during water oxidation is verified by the dramatic decline of [Ru(bpy)3]3+ concentration in the presence of the catalyst CoS‐2. At the same time, transient absorption experiments support a rapid electron transfers from 3EY* (excited photosensitizer eosin‐Y) to the catalyst CoS‐2 for efficient hydrogen evolution.  相似文献   

4.
A 2D/2D heterojunction of black phosphorous (BP)/graphitic carbon nitride (g‐C3N4) is designed and synthesized for photocatalytic H2 evolution. The ice‐assisted exfoliation method developed herein for preparing BP nanosheets from bulk BP, leads to high yield of few‐layer BP nanosheets (≈6 layers on average) with large lateral size at reduced duration and power for liquid exfoliation. The combination of BP with g‐C3N4 protects BP from oxidation and contributes to enhanced activity both under λ > 420 nm and λ > 475 nm light irradiation and to long‐term stability. The H2 production rate of BP/g‐C3N4 (384.17 µmol g?1 h?1) is comparable to, and even surpasses that of the previously reported, precious metal‐loaded photocatalyst under λ > 420 nm light. The efficient charge transfer between BP and g‐C3N4 (likely due to formed N? P bonds) and broadened photon absorption (supported both experimentally and theoretically) contribute to the excellent photocatalytic performance. The possible mechanisms of H2 evolution under various forms of light irradiation is unveiled. This work presents a novel, facile method to prepare 2D nanomaterials and provides a successful paradigm for the design of metal‐free photocatalysts with improved charge‐carrier dynamics for renewable energy conversion.  相似文献   

5.
High‐performance photocatalysts should have highly crystallized nanocrystals (NCs) with small sizes, high separation efficiency of photogenerated electron–hole pairs, fast transport and consumption of photon‐excited electrons from the surface of catalyst, high adsorption of organic pollutant, and suitable band gap for maximally utilizing sunlight energy. However, the design and synthesis of these versatile structures still remain a big challenge. Here, we report a novel strategy for the synthesis of ultrasmall and highly crystallized graphene–ZnFe2O4 photocatalyst through interface engineering by using interconnected graphene network as barrier for spatially confined growth of ZnFe2O4, as transport channels for photon‐excited electron from the surface of catalyst, as well as the electron reservoir for suppressing the recombination of photogenerated electron–hole pairs. As a result, about 20 nm ZnFe2O4 NCs with highly crystallized (311) plane confined in the graphene network exhibit an excellent visible‐light‐driven photocatalytic activity with an ultrafast degradation rate of 1.924 × 10?7 mol g?1 s?1 for methylene blue, much higher than those of previously reported photocatalysts such as spinel‐based photocatalysts (20 times), TiO2‐based photocatalysts (4 times), and other photocatalysts (4 times). Our strategy can be further extended to fabricate other catalysts and electrode materials for supercapacitors and Li‐ion batteries.  相似文献   

6.
The demands for green production of hydrogen peroxide have triggered extensive studies in the photocatalytic synthesis, but most photocatalysts suffer from rapid charge recombination and poor 2e oxygen reduction reaction (ORR) selectivity. Here, a novel composite photocatalyst of cyano-rich graphitic carbon nitride g-C3N4 is fabricated in a facile manner by sodium chloride-assisted calcination on dicyandiamide. The obtained photocatalysts exhibit superior activity (7.01 mm  h−1 under λ  ≥  420 nm, 16.05 mm  h−1 under simulated sun conditions) for H2O2 production and 93% selectivity for 2e ORR, much higher than that of the state-of-the-art photocatalyst. The porous g-C3N4 with Na dopants and cyano groups simultaneously optimize two limiting steps of the photocatalytic 2e ORR: photoactivity, and selectivity. The cyano groups can adjust the band structure of g-C3N4 to achieve high activity. They also serve as oxygen adsorption sites, in which local charge polarization facilitates O2 adsorption and protonation. With the aid of Na+, the O2 is reduced to produce more superoxide radicals as the intermediate products for H2O2 synthesis. This work provides a facile approach to simultaneously tune photocatalytic activity and 2e ORR selectivity for boosting H2O2 production, and then paves the way for the practical application of g-C3N4 in environmental remediation and energy supply.  相似文献   

7.
Discovering precious metal‐free electrocatalysts exhibiting high activity and stability toward both the oxygen reduction (ORR) and the oxygen evolution (OER) reactions remains one of the main challenges for the development of reversible oxygen electrodes in rechargeable metal–air batteries and reversible electrolyzer/fuel cell systems. Herein, a highly active OER catalyst, Fe0.3Ni0.7OX supported on oxygen‐functionalized multi‐walled carbon nanotubes, is substantially activated into a bifunctional ORR/OER catalyst by means of additional incorporation of MnOX. The carbon nanotube‐supported trimetallic (Mn‐Ni‐Fe) oxide catalyst achieves remarkably low ORR and OER overpotentials with a low reversible ORR/OER overvoltage of only 0.73 V, as well as selective reduction of O2 predominantly to OH?. It is shown by means of rotating disk electrode and rotating ring disk electrode voltammetry that the combination of earth‐abundant transition metal oxides leads to strong synergistic interactions modulating catalytic activity. The applicability of the prepared catalyst for reversible ORR/OER electrocatalysis is evaluated by means of a four‐electrode configuration cell assembly comprising an integrated two‐layer bifunctional ORR/OER electrode system with the individual layers dedicated for the ORR and the OER to prevent deactivation of the ORR activity as commonly observed in single‐layer bifunctional ORR/OER electrodes after OER polarization.  相似文献   

8.
Perovskite oxides have been explored as promising electrocatalysts for the oxygen evolution reaction (OER), while a lack of understanding of key factors impacting the catalytic activity restricts their further design and development. Here, for the first time, the contributions of oxygen vacancy (VO) and orbital occupancy of B‐site cations to the catalytic activity of NdNiO3 films are systematically investigated. It is found that OER activity follows a typical volcano‐shaped dependence on the oxygen pressure. In the range of 0.2–10 Pa, proper concentration of VO can provide a moderate bonding strength with intermediate hydroxyl OH* and the increased ratio of Ni3+/Ni2+ provides a more favorable occupancy of eg orbital for the catalytic activity; while in the range of 10–60 Pa, insufficient concentration of VO leads to an enhanced strength of hybridization between Ni 3d and O 2p band and thus deteriorated catalytic activity. The superior OER catalytic performance can be only achieved with both appropriate concentration of VO and the ratio of B‐site metal cations with different valences.  相似文献   

9.
The large‐scale production of metal–air batteries, an appealing solution for next‐generation energy storage, requires low‐cost, earth‐abundant, and efficient oxygen electrode materials, yet insights into active catalyst structures and synergistic reactivity remain largely unknown. Here, a new bifunctional oxygen electrode based on nitrogen‐doped carbon nanotubes decorated by spinel CuCo2O4 quantum dots (CuCo2O4/N‐CNTs) is reported, outperforming the benchmark of state‐of‐the‐art noble metal catalysts. Combining spectroscopic characterization and electrochemical studies, a prominent synergetic effect between CuCo2O4 and N‐doped carbon nanotubes is uncovered: the high conductivity, large active surface area, and increase in the number of catalytic sites induced by Cu doping (i.e., Cu2+ and Cu? N) can be beneficial to the overall electrocatalytic activities. Remarkably, the native flexibility of CuCo2O4/N‐CNTs allows its direct use as reversible oxygen electrodes in Zn–air batteries either with liquid alkaline electrolyte or in the all‐solid‐state configuration. The prepared devices demonstrate excellent discharging/charging performance, large energy density (83.83 mW cm?2 in liquid state, 1.86 W g?1 in all‐solid‐state), and long lifetime (48 h in liquid state, 9 h in all‐solid‐state), holding great promise in the practical application of rechargeable metal–air batteries and other fuel cells.  相似文献   

10.
The large‐scale production of metal–air batteries, an appealing solution for next‐generation energy storage, requires low‐cost, earth‐abundant, and efficient oxygen electrode materials, yet insights into active catalyst structures and synergistic reactivity remain largely unknown. Here, a new bifunctional oxygen electrode based on nitrogen‐doped carbon nanotubes decorated by spinel CuCo2O4 quantum dots (CuCo2O4/N‐CNTs) is reported, outperforming the benchmark of state‐of‐the‐art noble metal catalysts. Combining spectroscopic characterization and electrochemical studies, a prominent synergetic effect between CuCo2O4 and N‐doped carbon nanotubes is uncovered: the high conductivity, large active surface area, and increase in the number of catalytic sites induced by Cu doping (i.e., Cu2+ and Cu?N) can be beneficial to the overall electrocatalytic activities. Remarkably, the native flexibility of CuCo2O4/N‐CNTs allows its direct use as reversible oxygen electrodes in Zn–air batteries either with liquid alkaline electrolyte or in the all‐solid‐state configuration. The prepared devices demonstrate excellent discharging/charging performance, large energy density (83.83 mW cm?2 in liquid state, 1.86 W g?1 in all‐solid‐state), and long lifetime (48 h in liquid state, 9 h in all‐solid‐state), holding great promise in the practical application of rechargeable metal–air batteries and other fuel cells.  相似文献   

11.
Semiconductor photocatalysis acts as a sustainable green technology to convert solar energy for environmental purification and production of renewable energy. However, the current photocatalysts suffer from inefficient photoabsorption, rapid recombination of photogenerated electrons and holes, and inadequate surface reactive sites. Introduction of oxygen vacancies (OVs) in photocatalysts has been demonstrated to be an efficacious strategy to solve these issues and improve photocatalytic efficiency. This review systematically summarizes the recent progress in the oxygen vacant semiconductor photocatalysts. Firstly, the formation and characterizations of OVs in semiconductor photocatalysts are briefly introduced. Then, highlighted are the roles of OVs in the photocatalytic reactions of three types of typical oxygen-containing semiconductors, including metal oxides (TiO2, ZnO, WO3, W18O49, MoO3, BiO2-x, SnO2, etc), hydroxides (In(OH)3, Ln(OH)3 (Ln=La, Pr, and Nd), Layered double hydroxides) and oxysalts (bismuth-based oxysalts and others) photocatalysts. Moreover, the advanced photocatalytic applications of oxygen vacant semiconductor photocatalysts, such as pollutant removal, H2 production, CO2 reduction, N2 fixation and organic synthesis are systematically summarized. Finally, an overview on the current challenges and a prospective on the future of oxygen vacant materials is proposed.  相似文献   

12.
Using solar energy through green and simple artificial photosynthesis systems are considered as a promising way to solve the energy and environmental crisis. However, one of the important primary steps of photosynthesis, i.e., energy transfer, is long being ignored especially in inorganic semiconducting systems due to the small exciton binding energies. Herein, the simultaneous interrogation of the charge transfer and energy transfer steps in a photoexcitation process is proposed by utilizing few-layered nanosheet-assembled hierarchical BiOBr nanotubes with rich oxygen vacancies (OVs) as efficient multifunctional photocatalysts. Benefiting from the integrated 1D/2D structure and abundant OV defects, the excitonic effect strikes a delicate balance in the optimized BiOBr photocatalyst, showing not only improved charge carrier separation and transfer but also enhanced exciton generation. As a result, the hierarchical BiOBr nanotubes exhibit high efficiency toward photocatalytic CO2 reduction with an impressive CO evolution rate of 135.6 µmol g−1 h−1 without cocatalyst or photosensitizer. The dominant reactive oxygen species of singlet oxygen (1O2) are discriminated for the first time, which originated from an energy transfer process, with electrophilic character, whereas the minor effect of superoxide anion radical (O2) with a nucleophilic rate-determining step in the photocatalytic aerobic oxidation of sulfides.  相似文献   

13.
The development of cost‐effective and high‐performance electrocatalysts for the hydrogen evolution reaction (HER) is one critical step toward successful transition into a sustainable green energy era. Different from previous design strategies based on single parameter, here the necessary and sufficient conditions are proposed to develop bulk non‐noble metal oxides which are generally considered inactive toward HER in alkaline solutions: i) multiple active sites for different reaction intermediates and ii) a short reaction path created by ordered distribution and appropriate numbers of these active sites. Computational studies predict that a synergistic interplay between the ordered oxygen vacancies (at pyramidal high‐spin Co3+ sites) and the O 2p ligand holes (OLH; at metallic octahedral intermediate‐spin Co4+ sites) in RBaCo2O5.5+δ (δ = 1/4; R = lanthanides) can produce a near‐ideal HER reaction path to adsorb H2O and release H2, respectively. Experimentally, the as‐synthesized (Gd0.5La0.5)BaCo2O5.75 outperforms the state‐of‐the‐art Pt/C catalyst in many aspects. The proof‐of‐concept results reveal that the simultaneous possession of ordered oxygen vacancies and an appropriate number of OLH can realize a near‐optimal synergistic catalytic effect, which is pivotal for rational design of oxygen‐containing materials.  相似文献   

14.
Conventional photodynamic therapy (PDT) has limited applications in clinical cancer therapy due to the insufficient O2 supply, inefficient reactive oxygen species (ROS) generation, and low penetration depth of light. In this work, a multifunctional nanoplatform, upconversion nanoparticles (UCNPs)@TiO2@MnO2 core/shell/sheet nanocomposites (UTMs), is designed and constructed to overcome these drawbacks by generating O2 in situ, amplifying the content of singlet oxygen (1O2) and hydroxyl radical (?OH) via water‐splitting, and utilizing 980 nm near‐infrared (NIR) light to increase penetration depth. Once UTMs are accumulated at tumor site, intracellular H2O2 is catalyzed by MnO2 nanosheets to generate O2 for improving oxygen‐dependent PDT. Simultaneously, with the decomposition of MnO2 nanosheets and 980 nm NIR irradiation, UCNPs can efficiently convert NIR to ultraviolet light to activate TiO2 and generate toxic ROS for deep tumor therapy. In addition, UCNPs and decomposed Mn2+ can be used for further upconversion luminescence and magnetic resonance imaging in tumor site. Both in vitro and in vivo experiments demonstrate that this nanoplatform can significantly improve PDT efficiency with tumor imaging capability, which will find great potential in the fight against tumor.  相似文献   

15.
2D amorphous transition metal oxides (a-TMOs) heterojunctions that have the synergistic effects of interface (efficiently promoting the separation of electron−hole pairs) and amorphous nature (abundant defects and dangling bonds) have attracted substantial interest as compelling photocatalysts for solar energy conversion. Strategies to facilely construct a-TMOs-based 2D/2D heterojunctions is still a big challenge due to the difficulty of preparing individual amorphous counterparts. A generalized synthesis strategy based on supramolecular self-assembly for bottom–up growth of a-TMOs-based 2D heterojunctions is reported, by taking 2D/2D g-C3N4 (CN)/a-TMOs heterojunction as a proof-of-concept. This strategy primarily depends on controlling the cooperation of the growth of supramolecular precursor and the coordinated covalent bonds arising from the tendency of metal ions to attain the stable configuration of electrons, which is independent on the intrinsic character of individual metal ion, indicating it is universally applicable. As a demonstration, the structure, physical properties, and photocatalytic water-splitting performance of CN/a-ZnO heterojunction are systematically studied. The optimized 2D/2D CN/a-ZnO exhibits enhanced photocatalytic performance, the hydrogen (432.6 µmol h−1 g−1) and oxygen (532.4 µmol h−1 g−1) evolution rate are 15.5 and 12.2 times than bulk CN, respectively. This synthetic strategy is useful to construct 2D a-TMOs nanomaterials for applications in energy-related areas and beyond.  相似文献   

16.
Hydrogen peroxide is a highly valuable chemical, and electrocatalytic oxygen reduction towards H2O2 offers an alternative method for safe on‐site applications. Generally, low‐cost hematite (α‐Fe2O3) is not recognized as an efficient electrocatalyst because of its inert nature, but it is herein reported that α‐Fe2O3 can be endowed with high catalytic activity and selectivity via the engineering of facets and oxygen vacancies. Density‐functional theory (DFT)calculations predict that the {001} facet is intrinsically selective for H2O2 production, and that oxygen vacancies can trigger the high activity, providing sites for O2 adsorption and protonation, stabilizing the *OOH intermediate, and preventing cleavage of the O? O bond. The synthesized oxygen‐defective α‐Fe2O3 single crystals with exposed {001} facets achieve high selectivities for H2O2 of >90%, >88%, and >95% in weakly acidic, neutral, and alkaline electrolytes, respectively, and the H2O2 production rate reaches 454 mmol g?1cat h?1 at 0.1 V versus RHE under alkaline conditions. In an anion exchange membrane fuel cell, a maximum H2O2 production of 546.8 mmol L?1 with a high Faradaic efficiency of 80.5% is achieved. Thus, this work details a low‐cost catalyst feasible for H2O2 synthesis, and highlights the feasibility of theoretical catalyst design for practical applications.  相似文献   

17.
When fabricating Li‐rich layered oxide cathode materials, anionic redox chemistry plays a critical role in achieving a large specific capacity. Unfortunately, the release of lattice oxygen at the surface impedes the reversibility of the anionic redox reaction, which induces a large irreversible capacity loss, inferior thermal stability, and voltage decay. Therefore, methods for improving the anionic redox constitute a major challenge for the application of high‐energy‐density Li‐rich Mn‐based cathode materials. Herein, to enhance the oxygen redox activity and reversibility in Co‐free Li‐rich Mn‐based Li1.2Mn0.6Ni0.2O2 cathode materials by using an integrated strategy of Li2SnO3 coating‐induced Sn doping and spinel phase formation during synchronous lithiation is proposed. As an Li+ conductor, a Li2SnO3 nanocoating layer protects the lattice oxygen from exposure at the surface, thereby avoiding irreversible oxidation. The synergy of the formed spinel phase and Sn dopant not only improves the anionic redox activity, reversibility, and Li+ migration rate but also decreases Li/Ni mixing. The 1% Li2SnO3‐coated Li1.2Mn0.6Ni0.2O2 delivers a capacity of more than 300 mAh g?1 with 92% Coulombic efficiency. Moreover, improved thermal stability and voltage retention are also observed. This synergic strategy may provide insights for understanding and designing new high‐performance materials with enhanced reversible anionic redox and stabilized surface lattice oxygen.  相似文献   

18.
Perovskite‐structured (ABO3) transition metal oxides are promising bifunctional electrocatalysts for efficient oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). In this paper, a set of epitaxial rare‐earth nickelates (RNiO3) thin films is investigated with controlled A‐site isovalent substitution to correlate their structure and physical properties with ORR/OER activities, examined by using a three‐electrode system in O2‐saturated 0.1 m KOH electrolyte. The ORR activity decreases monotonically with decreasing the A‐site element ionic radius which lowers the conductivity of RNiO3 (R = La, La0.5Nd0.5, La0.2Nd0.8, Nd, Nd0.5Sm0.5, Sm, and Gd) films, with LaNiO3 being the most conductive and active. On the other hand, the OER activity initially increases upon substituting La with Nd and is maximal at La0.2Nd0.8NiO3. Moreover, the OER activity remains comparable within error through Sm‐doped NdNiO3. Beyond that, the activity cannot be measured due to the potential voltage drop across the film. The improved OER activity is ascribed to the partial reduction of Ni3+ to Ni2+ as a result of oxygen vacancies, which increases the average occupancy of the eg antibonding orbital to more than one. The work highlights the importance of tuning A‐site elements as an effective strategy for balancing ORR and OER activities of bifunctional electrocatalysts.  相似文献   

19.
V2O5 is a promising cathode material for lithium ion batteries boasting a large energy density due to its high capacity as well as abundant source and low cost. However, the poor chemical diffusion of Li+, low conductivity, and poor cycling stability limit its practical application. Herein, oxygen‐deficient V2O5 nanosheets prepared by hydrogenation at 200 °C with superior lithium storage properties are described. The hydrogenated V2O5 (H‐V2O5) nanosheets deliver an initial discharge capacity as high as 259 mAh g?1 and it remains 55% when the current density is increased 20 times from 0.1 to 2 A g?1. The H‐V2O5 electrode has excellent cycling stability with only 0.05% capacity decay per cycle after stabilization. The effects of oxygen defects mainly at bridging O(II) sites on Li+ diffusion and overall electrochemical lithium storage performance are revealed. The results reveal here a simple and effective strategy to improve the capacity, rate capability, and cycling stability of V2O5 materials which have large potential in energy storage and conversion applications.  相似文献   

20.
Oxygen‐deficient bismuth oxide (r‐Bi2O3)/graphene (GN) is designed, fabricated, and demonstrated via a facile solvothermal and subsequent solution reduction method. The ultrafine network bacterial cellulose (BC) as substrate for r‐Bi2O3/GN exhibits high flexibility, remarkable tensile strength (55.1 MPa), and large mass loading of 9.8 mg cm?2. The flexible r‐Bi2O3/GN/BC anode delivers appreciable areal capacitance (6675 mF cm?2 at 1 mA cm?2) coupled with good rate capability (3750 mF cm?2 at 50 mA cm?2). In addition, oxygen vacancies have great influence on the capacitive performance of Bi2O3, delivering significantly improved capacitive values than the untreated Bi2O3 flexible electrode, and ultrahigh gravimetric capacitance of 1137 F g?1 (based on the mass of r‐Bi2O3) can be obtained, achieving 83% of the theoretical value (1370 F g?1). Flexible asymmetric supercapacitor is fabricated with r‐Bi2O3/GN/BC and Co3O4/GN/BC paper as the negative and positive electrodes, respectively. The operation voltage is expanded to 1.6 V, revealing a maximum areal energy density of 0.449 mWh cm?2 (7.74 mWh cm?3) and an areal power density of 40 mW cm?2 (690 mW cm?3). Therefore, this flexible anode with excellent electrochemical performance and high mechanical properties shows great potential in the field of flexible energy storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号