首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2D MXenes have been widely applied in the field of electrochemical energy storage owning to their high electrical conductivity and large redox‐active surface area. However, electrodes made from multilayered MXene with small interlayer spacing exhibit sluggish kinetics with low capacity for sodium‐ion storage. Herein, Ti3C2 MXene with expanded and engineered interlayer spacing for excellent storage capability is demonstrated. After cetyltrimethylammonium bromide pretreatment, S atoms are successfully intercalated into the interlayer of Ti3C2 to form a desirable interlayer‐expanded structure via Ti? S bonding, while pristine Ti3C2 is hardly to be intercalated. When the annealing temperature is 450 °C, the S atoms intercalated Ti3C2 (CT‐S@Ti3C2‐450) electrode delivers the improved Na‐ion capacity of 550 mAh g?1 at 0.1 A g?1 (≈120 mAh g?1 at 15 A g?1, the best MXene‐based Na+‐storage rate performance reported so far), and excellent cycling stability over 5000 cycles at 10 A g?1 by enhanced pseudocapacitance. The enhanced sodium‐ion storage capability has also been verified by theoretical calculations and kinetic analysis. Coupling the CT‐S@Ti3C2‐450 anode with commercial AC cathode, the assembled Na+ capacitor delivers high energy density (263.2 Wh kg?1) under high power density (8240 W kg?1), and outstanding cycling performance.  相似文献   

2.
The fast growth of portable smart electronics and internet of things have greatly stimulated the demand for miniaturized energy storage devices. Micro‐supercapacitors (MSCs), which can provide high power density and a long lifetime, are ideal stand‐alone power sources for smart microelectronics. However, relatively few MSCs exhibit both high areal and volumetric capacitance. Here rapid production of flexible MSCs is demonstrated through a scalable, low‐cost stamping strategy. Combining 3D‐printed stamps with arbitrary shapes and 2D titanium carbide or carbonitride inks (Ti3C2Tx and Ti3CNTx, respectively, known as MXenes), flexible all‐MXene MSCs with controlled architectures are produced. The interdigitated Ti3C2Tx MSC exhibits high areal capacitance: 61 mF cm?2 at 25 µA cm?2 and 50 mF cm?2 as the current density increases by 32 fold. The Ti3C2Tx MSCs also showcase capacitive charge storage properties, good cycling lifetime, high energy and power densities, etc. The production of such high‐performance Ti3C2Tx MSCs can be easily scaled up by designing pad or cylindrical stamps, followed by a cold rolling process. Collectively, the rapid, efficient production of flexible all‐MXene MSCs with state‐of‐the‐art performance opens new exciting opportunities for future applications in wearable and portable electronics.  相似文献   

3.
MXenes comprise a new class of solution‐dispersable, 2D nanomaterials formed from transition metal carbides and nitrides such as Ti3C2. Here, it is shown that 2D Ti3C2 can be assembled from aqueous solutions into optical quality, nanometer thin films that, at 6500 S cm?1, surpass the conductivity of other solution‐processed 2D materials, while simultaneously transmitting >97% of visible light per‐nanometer thickness. It is shown that this high conductivity is due to a metal‐like free‐electron density as well as a high degree of coplanar alignment of individual nanosheets achieved through spincasting. Consequently, the spincast films exhibit conductivity over a macroscopic scale that is comparable to the intrinsic conductivity of the constituent 2D sheets. Additionally, optical characterization over the ultraviolet‐to‐near‐infrared range reveals the onset of free‐electron plasma oscillations above 1130 nm. Ti3C2 is therefore a potential building block for plasmonic applications at near‐infrared wavelengths and constitutes the first example of a new class of solution‐processed, carbide‐based 2D optoelectronic materials.  相似文献   

4.
Lithium–sulfur battery is recognized as one of the most promising energy storage devices, while the application and commercialization are severely hindered by both the practical gravimetric and volumetric energy densities due to the low sulfur content and tap density with lightweight and nonpolar porous carbon materials as sulfur host. Herein, for the first time, conductive CoOOH sheets are introduced as carbon‐free sulfur immobilizer to fabricate sulfur‐based composite as cathode for lithium–sulfur battery. CoOOH sheet is not only a good sulfur‐loading matrix with high electron conductivity, but also exhibits outstanding electrocatalytic activity for the conversion of soluble lithium polysulfide. With an ultrahigh sulfur content of 91.8 wt% and a tap density of 1.26 g cm?3, the sulfur/CoOOH composite delivers high gravimetric capacity and volumetric capacity of 1199.4 mAh g?1‐composite and 1511.3 mAh cm?3 at 0.1C rate, respectively. Meanwhile, the sulfur‐based composite presents satisfactory cycle stability with a slow capacity decay rate of 0.09% per cycle within 500 cycles at 1C rate, thanks to the strong interaction between CoOOH and soluble polysulfides. This work provides a new strategy to realize the combination of gravimetric energy density, volumetric energy density, and good electrochemical performance of lithium–sulfur battery.  相似文献   

5.
Microsupercapacitors (µSCs) are attractive electrochemical energy storage devices serving as alternatives to batteries in miniaturized portable electronics owing to high‐power density and extended cycling stability. Current state‐of‐the‐art microfabrication strategies are limited by costly steps producing materials with structural defects that lead to low energy density. This paper introduces an electrode engineering platform that combines conventional microfabrication and polymerization from the vapor phase producing 3D µSCs of the conducting polymer poly(3,4‐ethylenedioxythiophene) (PEDOT). A sputtered Fe2O3 precursor layer enables deposition of a 250 nm thick polymer coating comprised of a high packing density of vertically aligned PEDOT nanofibers possessing exceptional electrical conductivity (3580 S cm?1). The 3D µSCs exhibit state‐of‐the‐art volumetric energy density (16.1 mWh cm?3) as well as areal (21.3 mF cm?2) and volumetric (400 F cm?3) capacitances in 1 m H2SO4 aqueous electrolyte. These figures of merit represent the highest values among conducting polymer‐based µSCs. Electrochemical performance is controlled by investigating coating thickness, gap distance, fractal geometry, and gel electrolyte (1 m H2SO4/polyvinyl alcohol). The quasisolid‐state µSCs exhibit extended rate capability (50 V s?1), retain 94% of original capacitance after 10 000 cycles and remain thermally stable up to 60 °C.  相似文献   

6.
Flexible energy storage devices are critical components for emerging flexible and wearable electronics. Improving the electrochemical performance of flexible energy storage devices depends largely on development of novel electrode architectures and new systems. Here, a new class of flexible energy storage device called flexible sodium‐ion pseudocapacitors is developed based on 3D‐flexible Na2Ti3O7 nanosheet arrays/carbon textiles (NTO/CT) as anode and flexible reduced graphene oxide film (GFs) as cathode without metal current collectors or conducting additives. The NTO/CT anode with advanced electrode architectures is fabricated by directly growing Na2Ti3O7 nanosheet arrays on carbon textiles with robust adhesion through a simple hydrothermal process. The flexible GF//NTO/CT configuration achieves a high energy density of 55 Wh kg?1 and high power density of 3000 W kg?1. Taking the fully packaged flexible sodium‐ion pseudocapacitors into consideration, the maximum practical volumetric energy density and power density reach up to 1.3 mWh cm?3 and 70 mW cm?3, respectively. In addition, the flexible GF//NTO/CT device demonstrates a stable electrochemical performances with almost 100% capacitance retention under harsh mechanical deformation.  相似文献   

7.
Cellulose paper (CP)‐based asymmetrical thin film supercapacitors (ATFSCs) have been considered to be a novel platform for inexpensive and portable devices as the CP is low‐cost, lightweight, and can be rolled or folded into 3D configurations. However, the low energy density and poor cycle stability are serious bottlenecks for the development of CP‐based ATFSCs. Here, sandwich‐structured graphite/Ni/Co2NiO4‐CP is developed as positive electrode and the graphite/Ni/AC‐CP as negative electrode for flexible and high‐performance ATFSCs. The fabricated graphite/Ni/Co2NiO4‐CP positive electrode shows a superior areal capacitance (734 mF/cm2 at 5 mV/s) and excellent cycling performance with ≈97.6% Csp retention after 15 000 cycles. The fabricated graphite/Ni/AC‐CP negative electrode also exhibits large areal capacitance (180 mF/cm2 at 5 mV/s) and excellent cycling performance with ≈98% Csp retention after 15 000 cycles. The assembled ATFSCs based on the sandwich‐structured graphite/Ni/Co2NiO4‐CP as positive electrode and graphite/Ni/AC‐CP as negative electrode exhibit large volumetric Csp (7.6 F/cm3 at 5 mV/s), high volumetric energy density (2.48 mWh/cm3, 80 Wh/kg), high volumetric power density (0.79 W/cm3, 25.6 kW/kg) and excellent cycle stability (less 4% Csp loss after 20 000 cycles). This study shows an important breakthrough in the design and fabrication of high‐performance and flexible CP‐based electrodes and ATFSCs.  相似文献   

8.
3D metal carbide@mesoporous carbon hybrid architecture (Ti3C2Tx@Meso‐C, TX ≈ FxOy) is synthesised and applied as cathode material hosts for lithium‐sulfur batteries. Exfoliated‐metal carbide (Ti3C2Tx) nanosheets have high electronic conductivity and contain rich functional groups for effective trapping of polysulfides. Mesoporous carbon with a robust porous structure provides sufficient spaces for loading sulfur and effectively cushion the volumetric expansion of sulfur cathodes. Theoretical calculations have confirmed that metal carbide can absorb sulfur and polysulfides, therefore extending the cycling performance. The Ti3C2Tx@Meso‐C/S cathodes have achieved a high capacity of 1225.8 mAh g?1 and more than 300 cycles at the C/2 current rate. The Ti3C2Tx@Meso‐C hybrid architecture is a promising cathode host material for lithium‐sulfur batteries.  相似文献   

9.
In this study, the excellent energy storage performance is achieved by constructing opposite double‐heterojunction ferroelectricity–insulator–ferroelectricity configuration. The PbZr0.52Ti0.48O3 films and Al2O3 films are chosen as the ferroelectricity and insulator, respectively. The microstructures, polarization behaviors, breakdown strength, leakage current density, and energy storage performance are investigated systematically of the constructed PbZr0.52Ti0.48O3/Al2O3/PbZr0.52Ti0.48O3 opposite double‐heterojunction. The ultrahigh electric field breakdown strength (≈5711 kV cm?1) is obtained, which is beneficial to achieve high energy storage density. Meanwhile, the high linearity of hysteresis loops with low energy dissipation is obtained at a proper annealing temperature, which is induced by partially crystallized and is in favor of achieving high energy storage efficiency η. The PbZr0.52Ti0.48O3/Al2O3/PbZr0.52Ti0.48O3 annealed at 550 °C exhibits excellent energy storage performance with a storage density of 63.7 J cm?3 and efficiency of 81.3%, which is ascribed to the synergetic effect of electric breakdown strength (EBDS = 5711 kV cm?1) and the polarization (PmPr = 23.74 µC cm?2). The proposed method in this study opens a new door to improve the energy storage performance of inorganic ferroelectric capacitors.  相似文献   

10.
2D titanium carbide (Ti3C2Tx) MXene films, with their well-defined microstructures and chemical functionality, provide a macroscale use of nano-sized Ti3C2Tx flakes. Ti3C2Tx films have attractive physicochemical properties favorable for device design, such as high electrical conductivity (up to 20 000 S cm–1), impressive volumetric capacitance (1500 F cm–3), strong in-plane mechanical strength (up to 570 MPa), and a high degree of flexibility. Here, the appealing features of Ti3C2Tx-based films enabled by the layer-to-layer arrangement of nanosheets are reviewed. We devote attention to the key strategies for actualizing desirable characteristics in Ti3C2Tx-based functional films, such as high and tunable electrical conductivity, outstanding mechanical properties, enhanced oxidation-resistance and shelf life, hydrophilicity/hydrophobicity, adjustable porosity, and convenient processability. This review further discusses fundamental aspects and advances in the applications of Ti3C2Tx-based films with a focus on illuminating the relationship between the structural features and the resulting performances for target applications. Finally, the challenges and opportunities in terms of future research, development, and applications of Ti3C2Tx-based films are suggested. A comprehensive understanding of these competitive features and challenges shall provide guidelines and inspiration for the further development of Ti3C2Tx-based functional films, and contribute to the advances in MXene technology.  相似文献   

11.
1D ferroelectric nanostructures are promising for enhanced ferroelectric and piezoelectric performance on the nanoscale, however, their synthesis at the wafer scale using industrially compatible processes is challenging. In order to advance the nanostructure‐based electronics, it is imperative to develop a silicon‐compatible growth technique yielding high volumetric density and an ordered arrangement. Here, a major breakthrough is provided in addressing this need and ordered and close‐packed single crystalline ferroelectric nanorod arrays, of composition PbZr0.52Ti0.48O3 (PZT), grown on commercial grade 3 in. silicon wafer are demonstrated. PZT nanorods exhibit enhanced piezoelectric and ferroelectric performance compared to thin films of similar dimensions. Sandwich structured architecture utilizing 1D PZT nanorod arrays and 2D reduced graphene oxide thin film electrodes is fabricated to provide electrical connection. Combined, these results offer a clear pathway toward integration of ferroelectric nanodevices with commercial silicon electronics.  相似文献   

12.
Limited by 2D geometric morphology and low bulk packing density, developing graphene‐based flexible/compressible supercapacitors with high specific capacitances (gravimetric/volumetric/areal), especially at high rates, is an outstanding challenge. Here, a strategy for the synthesis of free‐standing graphene ribbon films (GRFs) for high‐performance flexible and compressible supercapacitors through blade‐coating of interconnected graphene oxide ribbons and a subsequent thermal treatment process is reported. With an ultrahigh mass loading of 21 mg cm?2, large ion‐accessible surface area, efficient electron and ion transport pathways as well as high packing density, the compressed multilayer‐folded GRF films (F‐GRF) exhibit ultrahigh areal capacitance of 6.7 F cm?2 at 5 mA cm?2, high gravimetric/volumetric capacitances (318 F g?1, 293 F cm?3), and high rate performance (3.9 F cm?2 at 105 mA cm?2), as well as excellent cycling stability (109% of capacitance retention after 40 000 cycles). Furthermore, the assembled F‐GRF symmetric supercapacitor with compressible and flexible characteristics, can deliver an ultrahigh areal energy density of 0.52 mWh cm?2 in aqueous electrolyte, almost two times higher than the values obtained from symmetric supercapacitors with comparable dimensions.  相似文献   

13.
The miniaturization of energy storage units is pivotal for the development of next‐generation portable electronic devices. Micro‐supercapacitors (MSCs) hold great potential to work as on‐chip micro‐power sources and energy storage units complementing batteries and energy harvester systems. Scalable production of supercapacitor materials with cost‐effective and high‐throughput processing methods is crucial for the widespread application of MSCs. Here, wet‐jet milling exfoliation of graphite is reported to scale up the production of graphene as a supercapacitor material. The formulation of aqueous/alcohol‐based graphene inks allows metal‐free, flexible MSCs to be screen‐printed. These MSCs exhibit areal capacitance (Careal) values up to 1.324 mF cm?2 (5.296 mF cm?2 for a single electrode), corresponding to an outstanding volumetric capacitance (Cvol) of 0.490 F cm?3 (1.961 F cm?3 for a single electrode). The screen‐printed MSCs can operate up to a power density above 20 mW cm?2 at an energy density of 0.064 µWh cm?2. The devices exhibit excellent cycling stability over charge–discharge cycling (10 000 cycles), bending cycling (100 cycles at a bending radius of 1 cm) and folding (up to angles of 180°). Moreover, ethylene vinyl acetate‐encapsulated MSCs retain their electrochemical properties after a home‐laundry cycle, providing waterproof and washable properties for prospective application in wearable electronics.  相似文献   

14.
Hollow structures are often used to relieve the intrinsic strain on metal oxide electrodes in alkali‐ion batteries. Nevertheless, one common drawback is that the large interior space leads to low volumetric energy density and inferior electric conductivity. Here, the von Mises stress distribution on a mesoporous hollow bowl (HB) is simulated via the finite element method, and the vital role of the porous HB structure on strain‐relaxation behavior is confirmed. Then, N‐doped‐C coated mesoporous α‐Fe2O3 HBs are designed and synthesized using a multistep soft/hard‐templating strategy. The material has several advantages: (i) there is space to accommodate strains without sacrificing volumetric energy density, unlike with hollow spheres; (ii) the mesoporous hollow structure shortens ion diffusion lengths and allows for high‐rate induced lithiation reactivation; and (iii) the N‐doped carbon nanolayer can enhance conductivity. As an anode in lithium‐ion batteries, the material exhibits a very high reversible capacity of 1452 mAh g?1 at 0.1 A g?1, excellent cycling stability of 1600 cycles (964 mAh g?1 at 2 A g?1), and outstanding rate performance (609 mAh g?1 at 8 A g?1). Notably, the volumetric specific capacity of composite electrode is 42% greater than that of hollow spheres. When used in potassium‐ion batteries, the material also shows high capacity and cycle stability.  相似文献   

15.
Fiber‐shaped micro‐supercapacitors (micro‐SCs) have attracted enormous interest in wearable electronics due to high flexibility and weavability. However, they usually present a low energy density because of inhomogeneity and less pores. Here, we demonstrate a microfluidic‐directed strategy to synthesize homogeneous nitrogen‐doped porous graphene fibers. The porous fibers‐based micro‐SCs utilize solid‐state phosphoric acid/polyvinyl alcohol (H3PO4/PVA) and 1‐ethyl‐3‐methylimidazolium tetrafluoroborate/poly(vinylidenefluoride‐co‐hexafluoropropylene) (EMIBF4/PVDF‐HFP) electrolytes, which show significant improvements in electrochemical performances. Ultralarge capacitance (1132 mF cm?2), high cycling‐stability, and long‐term bending‐durability are achieved based on H3PO4/PVA. Additionally, high energy densities of 95.7–46.9 µWh cm?2 at power densities of 1.5–15 W cm?2 are obtained in EMIBF4/PVDF‐HFP. The key to higher performances stems from microfluidic‐controlled fibers with a uniformly porous network, large specific surface area (388.6 m2 g?1), optimal pyridinic nitrogen (2.44%), and high electric conductivity (30785 S m?1) for faster ion diffusion and flooding accommodation. By taking advantage of these remarkable merits, this study integrates micro‐SCs into flexible and fabric substrates to power audio–visual electronics. The main aim is to clarify the important role of microfluidic techniques toward the architecture of electrodes and promote development of wearable electronics.  相似文献   

16.
High‐rate capability has become an important feature for energy storage devices, but it is often accompanied with a significant reduction in energy density. Therefore, developing an energy storage technology that combines high‐rate capability with high energy density is a great challenge for next‐generation electronic devices. Here, parallel circuitry is constructed at the nanoscale to lower the resistance for ion and electron transport that largely determines the rate performance. The parallel circuitry is constructed through intertwining continuous carbon nanotubes with an interpenetrating conductive assembly based on hierarchically layered MXene (Ti3C2Tx ) functionalized by KMnO4 (MnOx @Ti3C2Tx ). The assembly shows ultrafast rate capability, e.g., maintaining 50% capacity when the current density increases from 0.1 to 10 A g?1. Investigations of the kinetics and charge storage mechanisms confirm the efficiency of the designed parallel circuitry in improving rate capability by providing rapid pathways for ions and electrons, as well as dividing the current flow evenly into individual MnOx @Ti3C2Tx flakes in the assembly. The flexible MnOx @Ti3C2Tx based electrode endows zinc ion batteries with outstanding mechanical robustness and good power delivering performance. The paradigm presented here paves a new way for designing electrodes with high‐rate capability toward next‐generation energy storage technologies.  相似文献   

17.
Layered H2Ti6O13‐nanowires are prepared using a facile hydrothermal method and their Li‐storage behavior is investigated in non‐aqueous electrolyte. The achieved results demonstrate the pseudocapacitive characteristic of Li‐storage in the layered H2Ti6O13‐nanowires, which is because of the typical nanosize and expanded interlayer space. The as‐prepared H2Ti6O13‐nanowires have a high capacitance of 828 F g?1 within the potential window from 2.0 to 1.0 V (vs. Li/Li+). An asymmetric supercapacitor with high energy density is developed successfully using H2Ti6O13‐nanowires as a negative electrode and ordered mesoporous carbon (CMK‐3) as a positive electrode in organic electrolyte. The asymmetric supercapacitor can be cycled reversibly in the voltage range of 1 to 3.5 V and exhibits maximum energy density of 90 Wh kg?1, which is calculated based on the mass of electrode active materials. This achieved energy density is much higher than previous reports. Additionally, H2Ti6O13//CMK‐3 asymmetric supercapacitor displays the highest average power density of 11 000 W kg?1. These results indicate that the H2Ti6O13//CMK‐3 asymmetric supercapacitor should be a promising device for fast energy storage.  相似文献   

18.
Sodium (Na) metal is a promising alternative to lithium metal as an anode material for the next‐generation energy storage systems due to its high theoretical capacity, low cost, and natural abundance. However, dendritic/mossy Na growth caused by uncontrollable plating/stripping results in serious safe concerns and rapid electrode degradation. This study presents Sn2+ pillared Ti3C2 MXene serving as a stable matrix for high‐performance dendrite‐free Na metal anode. The intercalated Sn2+ between Ti3C2 layers not only induces Na to nucleate and grow within Ti3C2 interlayers, but also endows the Ti3C2 with larger interlayer space to accommodate the deposited Na by taking advantage of the “pillar effect,” contributing to uniform Na deposition. As a result, the pillar‐structured MXene‐based Na metal electrode could enable high current density (up to 10 mA cm?2) along with high areal capacity (up to 5 mAh cm?2) over long‐term cycling (up to 500 cycles). The full cell using MXene‐based Na metal anode exhibits superior electrochemical performance than that using host‐less commercial Na. It is believed that the well‐controlled MXene‐based Na anode not only extends the application scope of MXene, but also provides guidance in designing high‐performance Na metal batteries.  相似文献   

19.
2D titanium carbide (Ti3C2Tx MXene) has potential application in flexible/transparent conductors because of its metallic conductivity and solution processability. However, solution‐processed Ti3C2Tx films suffer from poor hydration stability and mechanical performance that stem from the presence of intercalants, which are unavoidably introduced during the preparation of Ti3C2Tx suspension. A proton acid colloidal processing approach is developed to remove the extrinsic intercalants in Ti3C2Tx film materials, producing pristine Ti3C2Tx films with significantly enhanced conductivity, mechanical strength, and environmental stability. Typically, pristine Ti3C2Tx films show more than twofold higher conductivity (10 400 S cm?1 vs 4620 S cm?1) and up to 11‐ and 32‐times higher strength and strain energy at failure (112 MPa, 1,480 kJ m?3, vs 10 MPa, 45 kJ m?3) than films prepared without proton acid processing. Simultaneously, the conductivity and mechanical integrity of pristine films are also largely retained during the long‐term storage in H2O/O2 environment. The improvement in mechanical performance and conductivity is originated from the intrinsic strong interaction between Ti3C2Tx layers, and the absence of extrinsic intercalants makes pristine Ti3C2Tx films stable in humidity by blocking the intercalation of H2O/O2. This method makes the material more competitive for real‐world applications such as electromagnetic interference shielding.  相似文献   

20.
Dark‐colored rutile TiO2 nanorods doped by electroconducting Ti3+ have been obtained uniformly with an average diameter of ≈7 nm, and have been first utilized as anodes in lithium‐ion batteries. They deliver a high reversible specific capacity of 185.7 mAh g?1 at 0.2 C (33.6 mA g?1) and maintain 92.1 mAh g?1 after 1000 cycles at an extremely high rate 50 C with an outstanding retention of 98.4%. Notably, the coulombic efficiency of Ti3+–TiO2 has been improved by approximately 10% compared with that of pristine rutile TiO2, which can be mainly attributed to its prompt electron transfer because of the introduction of Ti3+. Again the synergetic merits are noticed when the promoted electronic conductivity is combined with a shortened Li+ diffusion length resulting from the ultrafine nanorod structure, giving rise to the remarkable rate capabilities and extraordinary cycling stabilities for applications in fast and durable charge/discharge batteries. It is of great significance to incorporate Ti3+ into rutile TiO2 to exhibit particular electrochemical characteristics triggering an effective way to improve the energy storage properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号