首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
基于流-固-热耦合的深部煤层气抽采数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
范超军  李胜  罗明坤  杨振  张浩浩  王硕 《煤炭学报》2016,41(12):3076-3085
为了提高深部煤储层产气规律预测准确性、减小气井设计误差,分析了深部煤储层特征参数随埋深的变化规律,针对目前煤层气研究忽略了温度、地下水等因素问题,基于已建立的深部煤层气抽采流-固-热耦合模型,进行深部煤层气抽采数值模拟,分析不同地应力、初始渗透率、储层压力和温度等深部特征参数以及不同埋深条件下煤层气抽采的储层参数和产气演化规律。结果表明:渗透率变化为地应力增加、温度降低和煤层气解吸引起的煤基质收缩效应与储层压力降低引起的煤基质膨胀效应的综合竞争结果;随着煤层气和水被采出,储层温度降低和煤层气解吸占主导,储层渗透率升高;地应力对深部储层渗透率比例的变化起着主要作用,初始渗透率对产气速率起着控制作用;当煤层埋深小于临界埋深时,产气量随埋深逐渐增加,达到临界埋深后,产气量随埋深逐渐降低;低渗透率是制约埋深超千米的气井高产的关键。  相似文献   

2.
临兴深部煤层气含气性及开发地质模式分析   总被引:3,自引:0,他引:3       下载免费PDF全文
鄂尔多斯盆地东缘晋西挠褶带临兴中部地区煤层埋深大于1 000 m,达到了深部煤层气的研究范畴。基于实际生产资料,探讨区内深部煤层含气性,提炼了深煤层开发地质模式。研究认为:以含气量转折为深煤层临界深度的划分依据,则工区内深部煤层的临界深度在2 000 m左右;且深部中煤阶储层的吸附性对温度的敏感性要小于压力,中煤阶煤层的临界深度相对深于高煤阶;深部煤层气仍以吸附气为主,现有的等温吸附测试方法易造成深部煤层气含游离气比例换算较大的误区;深部煤层受温度影响,煤层临储比较高,受应力影响,储层物性较差,气井总体具有"见气快、排水降压难、产气量上升缓慢"的特点;研究区深部煤层气潜力巨大,现有气井经验显示,合理优化开发单元为深煤层单井突破的关键,A型"源-储"相通的富集开发地质模式是深煤层突破重点考虑的开发模式。  相似文献   

3.
陈世达  汤达祯  陶树  赵俊龙  李勇  刘文卿 《煤炭学报》2016,41(12):3069-3075
基于沁南—郑庄区块35层次煤层气井注入/压降及地应力实测数据,系统分析了郑庄区块地应力垂向变化规律,并在此基础上探讨了煤储层渗透性、含气性、气水产出垂向差异性演化,揭示了郑庄地区深部煤层气界限。郑庄区块地应力状态在垂向上发生转换:575 m以浅,σHσvσh,表现为大地动力场,现今地应力状态为压缩状态;575 m~675 m,水平主应力较浅部有所降低(σH≈σvσh),表现为准静水压力场,现今地应力状态为过渡状态(由压缩状态过渡为拉张状态);675~825 m以深,σvσHσh,表现为大地静力场型,现今地应力状态为拉张状态;825 m以深,σHσvσh,现今地应力状态为压缩状态。煤储层试井渗透率随埋深的变化与地应力场状态的转变基本一致,其实质是地应力作用下煤体孔隙结构的变形与破坏;含气量与埋深之间存在一个"临界深度"范围(800~1 000 m),超过此埋深范围之后煤层含气量随埋深增大而趋于降低。整体来说,825m以深煤层气资源处于地应力转换状态和(或)含气量"临界深度"之下,其赋存和开发地质条件发生转换,气体采收率相对较低,属于深部煤层气范畴。该埋深(825 m)以下煤层气开发将面临"低渗透率、低含气量、高地应力"的挑战。  相似文献   

4.
论深部煤层气成藏效应   总被引:6,自引:0,他引:6       下载免费PDF全文
从理论上分析了深部煤层气成藏的特殊性,系统阐述了煤层含气性、渗透性及流体压力系统的特征及其地质控制因素。研究认为:受地应力机制转换,深部煤层天然裂隙的产状和组合模式存在垂向分带性,进而影响到煤层渗透率的发育状况。构建了基于温压条件下吸附收缩膨胀、热膨胀、地应力及地下水化学等效应深部煤层渗透率数学模型,分析了深部煤层渗透率的分布规律。建模分析了地应力场、地温场及煤基质收缩膨胀效应对煤层压力状态的控制作用,发现深部煤层与浅部煤层的成压因素差异显著。在埋深1 200 m以浅,地应力和吸附量增加诱导的流体压力增强效应基本相当,地温效应最弱;埋深继续增大,地温效应变强,地应力次之,吸附膨胀效应最弱。基于较高温压条件下的煤吸附-解吸物理模拟,揭示了深部地层条件下煤吸附行为的特殊性。研究发现:埋深增大,煤级对煤吸附性的影响减小,高煤级煤吸附性对储层压力的敏感性弱于低~中煤级煤。构建了耦合煤级-温度-压力的有效扩散系数模型和深部煤层含气量数学模型,发现深部煤层含气量与埋深之间的临界深度受煤级、地层温度、地层压力的综合控制,临界深度在同煤级条件下随储层压力梯度增大而变浅,在相同煤级和储层压力梯度条件下随地温梯度减小而变深。认为...  相似文献   

5.
针对沁水盆地深部煤层气地质与储层认识不足、开发措施还在探索阶段等现状,以寿阳区块15煤为研究对象,探讨了深部煤层气地质特殊性及开发对策。研究区15煤层发育稳定,煤层厚度基本在3m左右|煤层含气量大部分在10~12m3/t,纵向上受煤层埋深和变质程度的双重影响,含气量在埋深大约1200~1500m出现临界点后随深度增加逐渐降低。与其他深部地区“三高”特征不同,15煤深部储层表现为低压、高应力、中等地温的特征,属比较严重的低压力梯度和低地温梯度范畴。煤储层渗透性为高孔低渗分类,渗透率一般0.01~0.1mD,渗透性主要受煤层埋深、地应力、煤体结构和孔隙特征影响。根据15煤低水分含量、高孔隙度以及生产井产气特征,认为游离气含量可能具有较大的占比。最后提出,单独开发15煤层时可采用顶板岩层水平井分段压裂方式或围岩多分支水平井方式,该技术已在盆地南部15煤取得了产气突破|15煤层及9、3煤层多煤层开发时可采用围岩与煤层合压的垂直井方式,并对开发工程中的增产和排采工艺提出了相应的建议。  相似文献   

6.
根据煤炭及煤层气勘查数据,分析了松河井田煤层气开发地质、煤储层渗透性和含气性条件,估算了煤层气资源量,并结合松6井工程开发效果,综合评价了该区煤层气地面抽采潜力。结果表明:松河井田煤层气赋存及保存条件好,薄-中厚煤层群发育,且煤层埋深、煤体结构、渗透性及含气性相对较好,埋深对煤层含气量控制作用明显,300~400 m为含气梯度转折深度,煤层气资源量达66.96×108m3;松6井采用"多段合层压裂、合层排采"工艺,实现单井单压裂段产气量长期超过1 000 m3/d的突破,但产气量波动较大,建议加强合层排采层间矛盾问题研究;鉴于该区地形、交通及地质条件的制约,建议采用"地面丛式井钻井、多段合层压裂"开发方式。  相似文献   

7.
在全面收集研究区煤层及煤层气地质勘查资料及实验测试成果的基础上,采用定量化分析方法,系统分析煤层吸附能力、含气性、地应力、孔渗性等的变化规律,重点探讨影响该区煤层气赋存的主控因素及开发地质条件。研究表明:该区煤层含气量总体受埋深控制,西高东低;纵向上,随埋深增大,煤的变质程度增高;埋深小于1 000 m,压力的正效应起主导作用,含气量、含气饱和度、渗透率随埋深的增大而增高,孔隙度随埋深的增大而降低;埋深超过1 000 m,温度的负效应起主导作用,含气量、含气饱和度随埋深的增大而降低,孔隙度逐渐反弹,渗透率逐渐降低;二者过渡埋深范围为750~1 000 m;埋深小于750 m,以水平应力为主,为压缩型地应力场;埋深介于750~1 000 m之间,部分转换为以垂直应力为主,表现出拉张型地应力场,有利于裂隙发育,渗透性变好,渗透率随埋深增大而增高;埋深大于1 000 m,重新转换为压缩型地应力场,渗透率随埋深增加而大幅降低。  相似文献   

8.
申建  秦勇  张春杰  胡秋嘉  陈伟 《煤炭学报》2016,41(1):156-161
探讨CO2注入深煤层提高煤层气采收率可行性对于解放我国丰富深部煤层气资源具有积极意义。分析了沁水盆地不同深度条件下储层参数的变化规律,开展了CO2注入煤层增产效应的数值模拟研究。结果显示,煤储层参数随埋深呈非线性变化且各参数显著变化深度具有较好的对应性,存在500~600 m,950~1 150 m两个关键转折界限,据此将煤层划分为浅部、过渡、深部三带。随着埋深增加煤储层强非均质向均质转换,即所有参数在浅部较为离散而深部收敛。通过不同深度煤层的CO2注入生产效果模拟显示,注入CO2后煤层气采收率均得到不同幅度提高;注入CO2提高煤层气采收率效果由过渡带、浅部、深部逐步递减;注入时间越早和越长,提高采收率效果越显著;要实现深部煤层气采收率显著增加必须保证一定的CO2注入量;深部CO2封存优势显著。  相似文献   

9.
为探究小尺度范围内煤层气井产能的地质主控因素,采用地质分析和灰色关联分析的方法,对郑村井区26口5年以上的煤层气生产井的地质及排采资料进行了深入系统分析。结果显示:煤层气井产能与埋深呈负相关关系,随煤厚增加呈波动上升趋势,与煤储层含气量、渗透率和可疏导指数均为正相关关系,埋深、煤厚、含气量、渗透率和可疏导指数均是控产的主要因素。进一步利用灰色关联分析法确定了各控产因素对煤层气井产能影响的大小次序,结果由大到小依次为:可疏导指数、含气量、渗透率、厚度、埋深。结果表明,可疏导指数综合表征了煤层气产出过程中气水的流动能力,可更好的反映小尺度范围内煤层气井的产能潜力。同时,煤层气井产能是多种地质因素耦合控制的结果,单一地质因素对产能影响的差距并不明显。  相似文献   

10.
就沁水盆地已有煤层气井储层物性资料统计研究发现,由浅至深,煤储层含气性、孔隙度、渗透率等均具有明显阶跃性变化特征,特别是在埋深600m、900m等2个深度点具有明显的跃变;而同样,煤储层所承受的最大水平主应力也在埋深600m、900m具有明显的跃变,两者具有很好的一致性;两者间的相关关系说明了随着深度增加,最大水平主应力成为了影响煤储层物性的主要影响因素。因此,对于深煤层煤层气地质选区和井位优选,最大水平主应力应该作为一主要影响因素来考虑。  相似文献   

11.
翟锋锋 《中州煤炭》2020,(12):99-105
煤储层物性及特征是煤层气地质理论的重要内容,加强其研究对提高煤层气勘探开发成效至关重要。基于天荣矿地质、煤层气勘探及相关测试等资料,采用地质与煤层气地质理论对该矿二2煤储层物性及特征进行了研究。结果表明:天荣矿二2煤层物理性质良好,生烃物质丰富;煤层含煤性、稳定性、可采性好,煤层气含量和纯度高,可为煤层气开发提供良好对象和气源条件;煤变质程度高,煤中裂隙相对发育,但其渗透性整体较差,渗透率分异显著且普遍低下;煤储层能量较强且分异显著,煤储层压力状态为欠压—超压型,并以正常—超压煤储层压力状态为主,有利于煤层气高产富集。  相似文献   

12.
依据韦州矿区煤炭勘探煤层资料、煤层气参数井获取的储层资料,通过对煤层气开发地质信息的有效提取,对韦二煤矿煤储层物性进行深入分析、研究,对煤层气资源量进行了计算,并采用数模方法预测了煤层气抽采率,确定了地面煤层气抽采相对有利区。研究认为:区内煤层含气性整体偏低,煤层甲烷含量在0.20~11.73 m3/t,气含量高值区仅出现在部分煤层、局部区域。多期次构造运动致使裂隙发育复杂化,硬度变小,煤体结构多为碎粒—糜棱结构,渗透率降低。主要可采煤层煤层气资源量为5.55×108 m3,资源丰度为1.51×108 m3/km2,属中等丰度、小型煤层气藏。各煤层煤层气采收率较低,约为15%,可采潜力较差。资源量在煤层分布上相对集中,12、14、15煤层气含量4 m3/t以上重叠区域为煤层气地面抽采相对有利区块。  相似文献   

13.
以新安矿区二1煤层为研究对象,基于区内煤田地质勘查、煤炭资源开发资料,结合区内煤矿井观察,分析了煤储层和煤层气分布特征,估算煤层气总资源量347.80×108 m3,资源丰度0.614 4×108 m3/km2。选取地质构造、埋深、煤厚、渗透率、储层压力、资源丰度6个要素对该区煤层气资源潜力进行评价,综合评价认为KD1、KD3属较有利区,其他属潜力区。  相似文献   

14.
我国埋深在1 000~2 000 m的深部煤层气地质资源量为22.5×1012m3,占总资源量的61.2%,如何提高深部煤层气单井产量,形成针对性的开发对策是研究和攻关的热点。通过统计分析大宁—吉县区块地质参数和试采井生产数据,表明深部煤储层具有渗透率低、微孔发育、可采系数低的特点,丛式井具有长期低产、上产缓慢和排采期长的生产特征,L型水平井具有上产期短,产气量高的生产特征。以此为基础建立了深部煤层气产能评价指标体系,影响深部煤层气产气效果的因素主要包括地质条件、工程技术及质量与管理三大类。因此,提高深部煤层气单井产量要做好以可采性为重点的高产区评价及预测,开展压裂施工参数优化和井型井网井距互相匹配的地质工程一体化设计,加强工程质量管理,降低储层伤害、实现长期持续排采。  相似文献   

15.
煤层气成藏条件研究是有效划分成藏类型或含气系统,煤层气富集高渗有利区预测、评价及优选的关键基础工作。基于赵庄井田煤层气地质条件及相关测试资料,借鉴前人研究成果,从煤生烃、煤层气储集和煤层气封盖保存条件等方面对赵庄井田煤层气成藏条件进行了研究。研究结果表明:煤中丰富的生烃物质在良好的生烃动力作用下,提高了生烃率和生烃量,为煤层气成藏提供了基础条件;煤变质程度高,促使煤中微小孔隙发育,煤层气储集能力增强和储集空间增大,有利于煤层气大量储存和富集;煤层埋深、围岩特性、构造及地下水径流等地质条件的有机匹配,为煤层气成藏提供了良好的封盖保存条件,是煤层气成藏的关键因素。  相似文献   

16.
基于新义井田深部勘查区煤田地质勘查成果,分析了该区构造和二1煤层展布特征,研究了二1煤储层特征、煤层气含量及其分布规律、煤层气赋存条件。研究认为,勘查区二1煤变质程度高,有利于煤层气的生成;煤储层孔隙度较高、围岩封闭性好,有利于煤层气赋存;煤体结构遭到严重破坏不利于煤层气运移;属正常压力、低渗煤储层。煤层气含量与埋深呈正相关趋势,DF1断层为煤层气逸散通道。  相似文献   

17.
查明余吾矿煤层气井产能的主控因素,可为进一步勘探开发提供指导。根据该矿已有的煤层气勘探开发井资料,从资源开发条件、钻井的井径扩大率、压裂改造效果、排采工作制度等方面分析了关键参数与日产气量的关系,得出了该区煤层气井产能的主控因素。结果表明:煤储层原始渗透率、临储压力比、含气饱和度是该区煤层气井产能的储层地质控制因素;钻井的井径扩大率、压裂改造效果是影响该区煤层气产能的工程控制因素;排采工作制度与产能之间关系不密切。当煤层段煤体结构复杂或碎粒/糜棱煤所占比例较高时,优化钻井参数或改善钻井液性能、优化压裂工艺参数与煤层的匹配性,是实现该区煤层气井产能最大化的重要保障。研究结果为该区煤层气井开发工程指明了方向。  相似文献   

18.
我国是煤炭资源大国,煤层气储量规模相当可观,但煤储层又具有低孔、低渗的不足,照搬国外或常规石油天然气的开采程序和方法已被证实是走不通的。应结合实际,根据不同地质条件、不同煤阶的开采程序,进行孔隙特征研究。煤孔隙特征、连通性和吸附能力对煤层气开采影响尤为重要,为研究煤孔隙结构特征随煤变质程度的变化关系及其吸附能力的响应特点,采取不同地区不同变质程度煤样,进行压汞测试和等温吸附实验。实验结果表明,煤孔隙度和平均孔径均随变质程度增加呈现降低—升高—降低的趋势;煤中孔隙连通性随煤变质程度增加逐渐变差;随煤变质程度增加,其最大吸附能力也呈现降低—升高—降低的总体趋势。  相似文献   

19.
李懿 《中州煤炭》2020,(4):61-65
为了揭示瓦斯赋存的地质规律,探讨煤层气开发利用前景,寻找瓦斯防治与利用途径,基于地质资料、瓦斯测试结果与近年煤层气测试成果,对海石湾地区主要可采煤层煤二层的瓦斯分布特征与煤层含气性、地层物性特征等进行了研究。结果表明:海石湾地区瓦斯赋存越靠近东、北部越大,靠近F19断层CO2含量增大,CH4与C2-C4含量则是在海石湾煤矿与韩家户沟-马家台勘查区交界处达到峰值,区内存在煤层气赋存的有利区块。该区地层抽排条件好,宜采取已建矿井地面瓦斯排采与勘查区先抽气、后采煤的方法进行开发,综合考虑瓦斯变害为利、变废为宝的利用途径。研究为该区与周边区域采取针对有效的瓦斯防治与利用措施提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号