首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 394 毫秒
1.
B4C and graphite(C) mixed powders were clad by laser at the surface of Ti–6Al–4V alloy in N2 environment. X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray energy dispersive spectroscopy (EDS) were used to analyze the composite coatings. It was found that TiC, TiB, TiN, and TiB2 which were comprised of the coating were hard strengthening phases in-stiu formed. The microstructure of the coating were mainly dendrites and whiskers-like crstals in white light area. When the mass ratio of graphite is up to 40%, the micro-hardness of coating in specimen A was up to 1245 HV0.2, which was much greater than that of the substrate. The hardness of Ti–6Al–4V alloy was only 360 HV0.2. The micro-hardness of the coating in specimen B was from 1060 HV0.2 to 1358 HV0.2. The hardness of specimen B was about three to four times greater than that of the substrate. However, the residual graphite in the coating acted as a lubricant, which increased the wear resistant property of the laser cladding coating. The wear resistant property of specimen B was 4 times as great as that of the substrate. It was twice as great as that of specimen A.  相似文献   

2.
In this study, Co-based laser cladding coatings reinforced by multiple phases were fabricated on titanium alloy. Co42 Co-based self-fluxing alloy, B4C, and CeO2 mixed powders were used as the precursor materials. The coatings were mainly composed of γ-Co/Ni, CoTi2, CoTi, NiTi, TiC, Cr7C3, TiB2, and TiB phases. A typical TiB2/Cr7C3/TiC composite structure was chosen. It was found that CeO2 did not influence the phase types of the coating significantly, but was effective in refining the microstructure and enhancing the microhardness and dry sliding wear resistance. Compared with the Ti-6Al-4V titanium alloy, the microhardness and wear resistance of the composite coatings were enhanced by 3.44–4.21 times and 14.26–16.87 times, respectively.  相似文献   

3.
The vigorous interfacial reactions in SiC/Ti-6Al-4V composites at elevated temperatures lead to the deterioration of the mechanical properties of the composites. TiB2 and TiC were selected as potential protective coatings for SiC fibres in titanium-based composites. These coatings were deposited on to fibres by the chemical vapour deposition technique. Comparisons and evaluations have been made of the effectiveness of these ceramics as protective coatings for SiC fibres by incorporating the coated fibres into a Ti-6Al-4V matrix using the diffusion bonding method. Emphasis has been placed on the chemical compatibility of the candidate coating with SiC and Ti-6Al-4V by examining the interfaces of the fibre/coating/matrix using microscopic methods and chemical analysis. A stoichiometric TiB2 coating was found to be stable with SiC and has proved an effective barrier to prevent the SiC fibre from reacting with the Ti-6Al-4V. The TiC coating showed no apparent reaction with a titanium-alloy matrix under the conditions studied, but was found to react with the SiC fibre substrate.  相似文献   

4.
The oxidation behavior of Ti3AlC2-20TiB2 composite was studied at 500?°C–900?°C in air. The composite showed a very low oxidation rate and followed a logarithmic oxidation law. The in-situ incorporation of TiB2 suppressed the anomalous rapid oxidation of the substrate Ti3AlC2 occurred near 600?°C by forming a protective B2O3 glass layer, and also improved the oxidation resistance of the MAX phase at intermediate-temperature.  相似文献   

5.
The characterization of TiB2/C-coated SiC fibres and their interface region in a Ti-6Al-4V based composite has been performed by using scanning electron microscopy (SEM), energy-dispersion X-rays (EDX) and Auger electron spectroscopy (AES). The features of the as-received fibre and the reactivity between fibre and matrix occurring during preparation of the composite have been studied in this paper. The interaction of the TiB2 external coating of the fibre with both the adjacent carbon layer and the titanium-based matrix is already appreciable in the as-received composite: TiB needles grow from TiB2 towards the matrix and a new layer containing C, Ti and B appears between TiB2 and C. The thicknesses of the original carbon and TiB2 fibre coatings decrease in the composite from 1000 nm to 400 and 800 nm, respectively. The TiB2 inhibits the reaction between SiC and Ti: there is no evidence of Si x Ti y brittle phases.  相似文献   

6.
The mechanically activated sintering process was adapted to synthesize titanium aluminum carbide (Ti3AlC2) at low temperature. A mechanically induced self-propagation reaction occurred by mechanical alloying of 3Ti/Al/2C powder mixtures. In addition to powder products, a large amount of rigor granules with a size of 0.5 ∼ 10 mm were produced. Fine powders containing Ti3AlC2, Ti2AlC and TiC were obtained. The granules composed of Ti3AlC2, Ti2AlC and TiC. Adding Sn may remove Ti2AlC and enhance the synthesis of Ti3AlC2. After Sn was added, the products only contained Ti3AlC2 and TiC. The Ti3AlC2 content of the powders and granules were 75 wt% and 88 wt%, respectively. The mechanically alloyed products were pressureless sintered at 900–1300°C for 2 h. Sintering of these products at 900 ∼ 1200°C yields samples containing over 95 wt% Ti3AlC2. The sintered powder compacts with high purity Ti3AlC2 had a fine organization. The lath Ti3AlC2 of the granules had a length of 10–20 μm.  相似文献   

7.
Laser-surface alloying of titanium alloy Ti-6Al-4V with C and Si mixed powders has been carried out. The composite coatings, thickness of about 0.7 mm, mainly consisting of titanium carbides and silicides, have a hardness of about 1500 HV0.1, and the wear resistance is 4 times more than that of the as-received.  相似文献   

8.
Ti3AlC2/Al2O3 nanocomposite powder was synthesized by mechanical-activation-assisted combustion synthesis of TiO2, Al and C powder mixtures. The effect of mechanical activation time of 3TiO2-5Al-2C powder mixtures, via high energy planetary milling (up to 20?h), on the phase transformation after combustion synthesis was experimentally investigated. X-ray diffraction (XRD) was used to characterize as-milled and thermally treated powder mixtures. The morphology and microstructure of as-fabricated products were also studied by scanning electron microscopy (SEM) and field-emission gun electron microscopy (FESEM). The experimental results showed that mechanical activation via ball-milling increased the initial extra energy of TiO2-Al-C powder mixtures, which is needed to enhance the reactivity of powder mixture and make it possible to ignite and sustain the combustion reaction to form Ti3AlC2/Al2O3 nanocomposite. TiC, AlTi and Al2O3 intermediate phases were formed when the initial 10?h milled powder mixtures were thermally treated. The desired Ti3AlC2/Al2O3 nanocomposite was synthesized after thermal treatment of 20?h milled powder and consequent combustion synthesis and FESEM result confirmed that produced powder had nanocrystalline structure.  相似文献   

9.
Self-propagating High-temperature Synthesis (SHS) of titanium and boron carbide (B4C) combined with explosively driven Dynamic Compaction (DC) was employed for the fabrication of composite TiB2/TiC compacts. A 23 factorially designed experiment set was used to examine the effects of the TiB2/TiC ratio, delay time and C/M ratio on the consolidation and properties of the compacts. The delay time is the time between completion of the SHS reaction and compaction. The C/M ratio, the ratio of the explosive mass to that of the flyer plate, influences the pressure applied to the samples during compaction. Composites with molar TiB2/TiC ratios of 2:1 or 1:2 were prepared using Ti and B4C or Ti, C and B4C, respectively, as reactants. The SHS/DC of Ti and B4C resulted in high quality, near fully dense TiB2/TiC composite compacts. Under best conditions, the densities were greater than 98% of the theoretical maximum. While the microhardness and densities of the compacts with TiB2/TiC ratio of 2:1 were comparable to those of monolithic TiB2 and TiC, compacts with TiB2/TiC ratios of 1:2 were poorly consolidated and contained extensive cracks. Given the high energy and time efficiency, high product quality and inexpensive reactants, the SHS/DC of Ti and B4C represents an attractive technique for the economical fabrication of TiB2/TiC composites.  相似文献   

10.
TiC/TiN+TiCN reinforced composite coatings were fabricated on Ti?C6Al?C4V alloy by laser cladding, which improved surface performance of the substrate. Nano-CeO2 was able to suppress crystallization and growth of the crystals in the laser-cladded coating to a certain extent. With the addition of proper content of nano-CeO2, this coating exhibited fine microstructure. In this study, the Al3Ti+TiC/TiN+nano-CeO2 laser-cladded coatings were studied by means of X-ray diffraction and scanning electron microscope. The X-ray diffraction results indicated that the Al3Ti+TiC/TiN+nano-CeO2 laser-cladded coating consisted of Ti3Al, TiC, TiN, Ti2Al20Ce, TiC0·3N0·7, Ce(CN)3 and CeO2, this phase constituent was beneficial to increase the microhardness and wear resistance of Ti?C6Al?C6V alloy.  相似文献   

11.
To investigate the effect of laser process parameters on microstructure and properties of composite coating, the composite coatings were manufactured by laser cladding Ni–Cr–Ti–B4C mixed powder on Q235 mild steel with different process parameters. The coatings are bonded with the substrate by remarkable metallurgical binding without cracks and pores. The composite coatings are consisted of in situ synthesized solid solution Ni–Cr–Fe, intermetallic compound (IMC) Ni3Ti, Cr2Ti, and ceramic reinforcements TiB2, TiC. Results of scanning electron microscopy (SEM) revealed that the ceramic reinforcements became coarser with higher specific energy (Es). There were independent ceramics TiB2, TiC, eutectic ceramic TiB2–TiC in coatings, and eutectic alloy–ceramic was detected. Compared with the substrate, the microhardness of coatings was increased significantly, and the maximum microhardness of coatings was approximately five times as high as the substrate. The wear resistance of coatings was improved dramatically than the substrate. Compared to the coatings with lower Es, higher Es led to lower microhardness and worse wear resistance ascribing to more Fe diffused into the coating from the substrate.  相似文献   

12.
Crack propagation testing has been applied to synthetic metal matrix composites (MMC) in order to compare failure mechanisms in Ti-6Al-4V alloy reinforced by uncoated boron, B(B4C) and chemical vapour deposition (CVD) SiC filaments. The impeding effect of the fibres leads to low crack growth rates, compared to those reported for the unreinforced Ti-6Al-4V alloy and to higher toughness despite the presence of the reinforcing brittle phases. After long isothermal exposures at 850° C, the MMC crack growth resistance is reduced mainly due to fibre degradation, fibre-matrix debonding and an increase in matrix brittleness. However, for short-time isothermal exposures (up to about 10 h for B/Ti-6Al-4V, 30 h for B (B4C)/Ti-6Al-4V and 60 h for SiC/Ti-6Al-4V) the crack growth resistance is significantly increased. This improvement is related to the build up of an energy-dissipating mechanism by fibre microcracking in the vicinity of the crack tip. This damaging mechanism allowing matrix plastic deformation is already effective for boron and B(B4C) in the as-fabricated state, but occurs only after 10 h of thermal exposure at 850° C in the case of SiC/Ti-6Al-4V composites.  相似文献   

13.
Abstract

The formation of Ti3AlC2 was first investigated by mechanically induced self-propagating reaction (MSR) in Ti–Al–C system at room temperature. The effects of the milling parameters on the formation of Ti3AlC2 were discussed. The phase composition and microstructure were analysed and observed by using X-ray diffraction and scanning electron microscopy, respectively. The formation mechanism of Ti3AlC2 was analysed. An MSR was ignited during mechanical alloying of Ti, Al and C powders after a short time. An exothermic reaction between Ti and Al in the Ti–Al–C system first occurred after a certain milling time. Then, Ti–C reaction was induced at high temperature. All of the above reactions were exothermic that resulted in Ti–Al liquid formation. The previously formed TiC dissolved into and nucleated in the Ti–Al liquid. At last, Ti3AlC2 formed between the Ti–Al melt and the TiC. The final products consist of Ti3AlC2, TiC and Al3Ti.  相似文献   

14.
TiC-TiB2 particulate locally reinforced steel matrix composites were fabricated by a novel TE-casting route from an Al-Ti-B4C system with various B4C particle sizes. The formation mechanism of TiC and TiB2 in the locally reinforced regions was investigated. The results showed that TiC and TiB2 are formed and precipitated from Al-Ti-B-C melt resulting from the dissociation of B4C into Al-Ti melt when the concentrations of B and C atoms in the Al-Ti-B-C melt become saturated. However, in the case of coarse B4C powders (≥40 μm) used, the primary reaction in the Al-Ti-B-C melt is quite limited due to the poor dissociation of B4C. The poured steel melt infiltrates into the primary reaction product and thus leads to the formation of Al-Fe-Ti-B-C melt, thanks to the favorable reaction of molten Fe with remnant B4C, and then TiC and TiB2 are further formed and precipitated from the saturated Al-Fe-Ti-B-C melt. The relationship between the mechanisms of thermal explosion (TE) synthesis of TiC and TiB2 in the electric resistance furnace and during casting was proposed.  相似文献   

15.
To improve the surface hardness of aluminum, in-situ TiB2–TiC–Al2O3 composite coating was deposited on it by pre-placed laser coating process using precursor mixture of (TiO2 + B4C) and (TiO2 + B4C + Al). Pulsed Nd:YAG laser was used to produce coating track by scanning a laser beam in overlapped condition. Multiple tracks again overlapped to get a wider coating area. Phase constituents and microstructure of the deposited coating were studied by XRD and FESEM analysis. Vickers micro-hardness tester was used to measure micro-hardness of the coating. Results indicate that, in appropriate laser processing condition, coating was obtained with metallurgical bonding to aluminum substrate. XRD and microstructure analysis confirms the formation of TiB2, TiC, and Al2O3 in the coating layer through in-situ reaction of reactant powders. Micro-hardness of the coating was found appreciably higher in comparison to the as-received aluminum substrate, due to presence of hard ceramic particles produced during in-situ reaction and their grain refinement for rapid cooling.  相似文献   

16.
《Composites》1994,25(9):887-890
The extent of interfacial reaction after short-term thermal exposure during vacuum plasma spraying (vps) and vacuum hot-pressing (vhp) of Ti-based metal-matrix composites (mmcs) using TiB2/C-coated and uncoated SiC fibres has been investigated by a combination of scanning and transmission electron microscopies. There is no interfacial reaction after short-term thermal exposure during vps manufacture of SiCf/Ti mmcs using either TiB2/C-coated or uncoated SiCf. There is only limited interfacial reaction after short-term thermal exposure during vhp manufacture of SiCf/Ti-6Al-4V mmcs using TiB2/C-coated SiCf. In the initial stage of the interfacial reaction, TiB needles are formed by preferential nucleation and growth at β particles and grain boundaries in the Ti-6Al-4V matrix.  相似文献   

17.
The isothermal oxidation behavior of Ti3AlC2 based material containing 5 vol% TiC inclusion in air had been investigated at 500–900 °C by means of TGA, XRD, Raman spectroscopy and SEM/EDS. It was demonstrated that, although Ti3AlC2 based material exhibited good oxidation resistance at temperatures above 700 °C, anomalous oxidation with higher oxidation rate occurred at lower temperatures of 500 and 600 °C. This interesting phenomenon was due to the formation of microcracks associated with the stress developed within the scales, mainly consisting of anatase, and the volume expansion as Ti3AlC2 based material was directly exposed to air at those temperatures. Its oxidation, at temperatures investigated with the exception of 600 °C, generally obeyed a parabolic rate law. The weight gain data for the remaining temperatures were analyzed with an instantaneous parabolic rate constant method by assuming a parabolic rate law. The variations of instantaneous parabolic rate constant with time reflected the complexity of the oxidation behavior of Ti3AlC2 based material. These variations were discussed from the viewpoint of the formation of microcracks at 500 °C, and preferred oxidation of TiC inclusion in the initial oxidation and its subsequent depletion at 800 and 900 °C on the basis of X-ray diffraction, Raman spectroscopy, SEM scale morphology observation and composition analysis using EDS. In addition, the deleterious effect of TiC inclusion on the oxidation resistance of Ti3AlC2 based material was also investigated and discussed with comparison to monolithic Ti3AlC2, which was helpful to understand the discrepancies in reports on the oxidation of Ti3AlC2.  相似文献   

18.
TiC/TiN+TiCN-reinforced composite coatings were fabricated on Ti–6Al–4V alloy by laser cladding, which improved surface performance of the substrate. Nano-CeO2 was able to suppress crystallization and growth of crystals in the laser-cladded coating to a certain extent. With the addition of proper content of nano-CeO2, this coating exhibited fine microstructure. In this study, Al3Ti+TiC/TiN+nano-CeO2 laser-cladded coatings have been studied by means of X-ray diffraction and scanning electron microscope. X-ray diffraction results indicated that Al3Ti+TiC/TiN+nano-CeO2 laser-cladded coating consisted of Ti3Al, TiC, TiN, Ti2Al20Ce, TiC0·3N0·7, Ce(CN)3 and CeO2, this phase constituent was beneficial in increasing microhardness and wear resistance of Ti–6Al–6V alloy.  相似文献   

19.
To enhance the wear resistance and friction-reducing capability of titanium alloy, a process of laser cladding γ-NiCrAlTi/TiC + TiWC2/CrS + Ti2CS coatings on Ti–6Al–4V alloy substrate with preplaced NiCr/Cr3C2–WS2 mixed powders was studied. A novel coating without cracks and few pores was obtained in a proper laser processing. The composition and microstructure of the fabricated coating were examined by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) techniques, and tribological properties were evaluated using a ball-on-disc tribometer under dry sliding wear test conditions at 20 °C (room-temperature), 300 °C, 600 °C, respectively. The results show that the coating has unique microstructure consisting of α-Ti, TiC, TiWC2, γ-NiCrAlTi, Ti2CS and CrS phases. Average microhardness of the composite coating is 1005 HV0.2, which is about 3-factor higher than that of Ti–6Al–4V substrate (360 HV0.2). The friction coefficient and wear rate of the coating are greatly decreased due to the combined effects of the dominating anti-wear capabilities of reinforced TiC and TiWC2 carbides and the CrS and Ti2CS sulfides which have excellent self-lubricating property.  相似文献   

20.
The coatings were deposited by reactive plasma spraying (RPS) in air and low-pressure plasma spraying (LPPS) based on the reaction between Ti and B4C powder, respectively. The thermal spray powder of Ti and B4C added with powder Cr (metallic binder) in air is compared with that without powder Cr addition in the low pressure. (Prior to deposition, the powder was screened and separated for RPS whereas spray drying, sintering and sieving were done for LPPS.) The phase composition and the microstructure of coatings were studied by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The anti-corrosion property of coatings was also investigated. It is found that the coating prepared by RPS, which is more densification, is composed of TiN, TiB2, and a small phase fraction of titanium oxides. The composition of the coating deposited by reactive LPPS is TiB2, Ti(C, N), Ti4N3−x and impurity phase of Ti5Si3. There is no appearance of titanium oxides in low pressure. The coatings have the typical lamellar structure and adhere to the bond coating well. The mean Vickers microhardness value of the coating deposited by RPS is higher than that of the coating deposited by LPPS. Furthermore, the corrosion resistance of the coating deposited by RPS is superior to that of the coating prepared by LPPS in near neutral 3.5 wt% NaCl electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号