首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The paper investigates the failure and behaviour of metal/composite double lap shear (DLS) joints where the composite is the inner/loaded adherend, using multi-scale modelling techniques. The unidirectional (UD) composite is based on glass fibre and vinyl ester resin moulded by pultrusion. The multi-scale models include a long overlap DLS joint (macro), small shear and tensile laminate joints (meso) and fibre–matrix resin models (micro). The macro- and meso-scale joints/models were mechanically tested and numerically analysed to determine failure loads and corresponding stresses and to identify the loci of failure within the joint interfaces. In addition, the numerical modelling was extended to include micro-scale models to determine transverse tensile stresses at the fibre–matrix interface to further understand failure and behaviour. The study concluded that the failure in the bonded composite is largely governed by the maximum transverse strength at the fibre–matrix interface and its defects. Also, it was concluded that this stress might be suppressed by the longitudinal tensile stress acting on the UD composite at the surface just below the bondline.  相似文献   

2.
Abstract

This paper presents a finite element (FE) analysis of the fracture behaviour of composite T-joints with various fibre reinforcement architectures subjected to pull-out loading. The FE model accounts for the effect of interface strength and interlaminar fracture energy on the ultimate load to failure; a linear softening fracture based law is adopted to describe crack growth in the form of delamination. The numerical simulation shows that the failure load increases with increasing interlaminar strength, which controls delamination initiation. The FE also demonstrates that the failure load increases with increasing interface fracture energy and the delamination propagation depends largely upon the fracture energy, which is enhanced by introducing interlaminar veils or through-thickness tuft yarns (stitching). Predictions were validated using experimental data for E-glass fibre/epoxy T-joints subjected to a tensile pull-out loading. The load–displacement response from the FE analysis is in a good agreement with measurements, illustrating the effectiveness of through thickness tufting that results to progressive, a more ‘ductile’, rather than abrupt catastrophic failure.  相似文献   

3.
SiCf/SiC composites with BN interface were prepared through isothermal-isobaric chemical vapour infiltration process. Room temperature mechanical properties such as tensile, flexural, inter-laminar shear strength and fracture toughness (KIC) were studied for the composites. The tensile strength of the SiCf/SiC composites with stabilised BN interface was almost 3.5 times higher than that of SiCf/SiC composites with un-stabilised BN interphase. The fracture toughness is similarly enhanced to 23 MPa m1/2 by stabilisation treatment. Fibre push-through test results showed that the interfacial bond strength between fibre and matrix for the composite with un-stabilised BN interface was too strong (>48 MPa) and it has been modified to a weaker bond (10 MPa) due to intermediate heat treatment. In the case of composite in which BN interface was subjected to thermal treatment soon after the interface coating, the interfacial bond strength between fibre and matrix was relatively stronger (29 MPa) and facilitated limited fibre pull-out.  相似文献   

4.
Abstract

The deformation behaviour of the new high performance polymer fibres, poly(p-phenylene benzobisoxazole) (PBO) and polypyridobisimidazole (PIPD) and their adhesion to an epoxy composite matrix have been investigated. Both fibres give well defined Raman spectra, and the deformation micromechanics of PBO and PIPD single fibres and composites were studied from stress induced Raman band shifts. Single fibre stress-strain curves were determined in both tension and compression, thus providing an estimate of the compressive strength of these fibres. It was found that the PIPD fibre has a higher compressive strength (~1 GPa) than PBO (~0·3 GPa) and other high performance polymer fibres, because hydrogen bond formation is possible between PIPD molecules. It has been shown that when PBO and PIPD fibres are incorporated into an epoxy resin matrix, the resulting composites show very different interfacial failure mechanisms. The fibre strain distribution in the PBO-epoxy composites follows that predicted by the full bonding, shear lag model at low matrix strains, but deviations occur at higher matrix strains due to debonding at the fibre/matrix interface. For PIPD-epoxy composites, however, no debonding was observed before fibre fragmentation, indicating better adhesion than for PBO as a result of reactive groups on the PIPD fibre surface.  相似文献   

5.
The effects of rubber content, rate of peel and temperature on peel strength of ATBN modified DGEBA based epoxy resin adhesives have been investigated. The fracture surfaces of peel test specimens and the distribution of rubber particles in cured bulk epoxy resin have been observed with SEM and TEM, respectively. The mechanical properties of bulk rubber modified epoxy resin have been also measured. The peel strengths increased with increasing rubber content, peel rate, and decreasing temperature. The peel strengths were superposed as a function of rate and temperature. Plots of the shift factors against temperature gave two straight lines, which followed an Arrhenius relationship. The region of temperature below the intersection of the two straight lines, temperature somewhat lower than Tg of epoxy adhesive, gave markedly high peel strengths and a stick-slip failure due to plastic deformation of the adhesive, and a number of micro holes produced by the rupture of rubber micro particles on the fracture surface. The region of temperature above the intersection gave lower peel strengths and an apparent interfacial failure with ductile fracture of the adhesive, and larger, shallow holes or no holes. From these results, the marked increase of peel strength was concluded to be mainly attributed to the plastic or viscoelastic deformation of epoxy matrix, the strong bond at the interface between rubber particles and epoxy matrix, and the dilation and rupture of a number of rubber particles.  相似文献   

6.
7.
To investigate the effects of environmental temperature on fracture behavior of a polyetherimide (PEI) thermoplastic polymer and its carbon fiber (CF/PEI) composite, experimental and numerical studies were performed on compact tension (CT) and double cantilever beam (DCB) specimens under mode‐I loading. The numerical analyses were based on 2‐D large deformation finite element analyses (FEA). Elevated temperatures greatly released the crack tip triaxiality (constraint) and promoted matrix deformation due to low yield strength and enhanced ductility of the PEI matrix, which resulted in the greater plane‐strain fracture toughness of the bulk PEI polymer and the interlaminar fracture toughness of its composite during delamination propagation with increasing temperature. Furthermore, the high triaxiality was developed around the delamination front tip in the DCB specimen, which accounted for the poor translation of matrix toughness to the interlaminar fracture toughness by suppressing the matrix deformation and reducing the plastic energy dissipated in the plastic zone. Especially, at delamination initiation, the weakened fiber/matrix adhesion at elevated temperatures led to premature failure of fiber/matrix interface, suppressing matrix deformation and preventing the full utilization of matrix toughness. Consequently, low interlaminar fracture toughness was obtained at elevated temperatures. POLYM. COMPOS., 26:20–28, 2005. © 2004 Society of Plastics Engineers.  相似文献   

8.
The interfacial bond strength in glass fibre-polyester resin composites has been investigated using various experimental techniques. These included blocks of resin containing fibre (in which, depending on the geometry of the specimen, failure occurs in either a shear or tensile mode) the pullout of a fibre from a disc of resin and a short beam shear test for interlaminar shear strength determination.

Low power optical microscopy and optical retardation measurements of stress induced birefringence were used to detect the difference between intact and debonded fibre resin interfaces. The shear modulus and shear strength of the resin were obtained from torsion tests on cylindrical rods of the resin.

The single fibre shear debonding specimen and the short beam shear test are shown to be the most viable test methods but interpretation of the results is complicated by the various modes of failure possible and by the different stress states which exist in the area of the specimen where debonding starts. Stress concentration factors obtained by finite element analysis and photoelastic analysis have been applied to the results from these tests and the corrected interfacial bond strengths are in close agreement.

The real interfacial bond strengths of well bonded glass-fibre polyester resin systems is shown to be of the order of 70 MN m-2.  相似文献   

9.
The asymptotic form of the interface corner stress field in a butt joint is discussed, and a failure analysis based on the stress intensity factor defining the magnitude of this asymptotic stress field is validated. A stress singularity of type Krδ(δ < 0) exists at an interface corner in a butt joint (i.e. where an interface intersects a stress-free edge). A simple relation defines the stress intensity factor K for an idealized butt joint composed of a thin elastic adhesive layer bonded between rigid adherends and subjected to transverse tension and uniform adhesive shrinkage. This stress intensity factor, referred to here as the free-edge stress intensity factor Kf, is applicable to both plane strain and axisymmetric geometries. The way that uniform adhesive shrinkage (thermal contraction) during cure alters interface corner stress fields is also discussed. When adhesive shrinkage is present, both constant and singular terms must be included in the asymptotic solution to attain good agreement with full field finite element results over a reasonably large interface corner region. Experiments have been carried out to investigate the applicability of a Kf-based failure criterion to butt joints. Butt joints were fabricated by bonding two stainless steel rods together with an epoxy adhesive (Epon 828/T-403). The measured joint strength increased by a factor of 2 as the bond thickness was reduced from 2.0 to 0.25 mm. The observed bond thickness effect is accurately predicted when failure is presumed to occur at a critical Kf value. This fracture criterion suggests that the butt joint tensile strength varies roughly as the reciprocal of the cube root of bond thickness when the adhesive's Poisson's ratio is between 0.3 and 0.4, residual stress levels at the interface corner are negligible, the adherends are essentially rigid relative to the adhesive, and small-scale yielding conditions hold at the interface corner.  相似文献   

10.
Interphase plays an important role in the mechanical behavior of SiC/SiC ceramic-matrix composites (CMCs). In this paper, the microstructure and tensile behavior of multilayered (BN/SiC)n coated SiC fiber and SiC/SiC minicomposites were investigated. The surface roughness of the original SiC fiber and SiC fiber deposited with multilayered (BN/SiC), (BN/SiC)2, and (BN/SiC)4 (BN/SiC)8 interphase was analyzed through the scanning electronic microscope (SEM) and atomic force microscope (AFM) and X-ray diffraction (XRD) analysis. Monotonic tensile experiments were conducted for original SiC fiber, SiC fiber with different multilayered (BN/SiC)n interfaces, and SiC/SiC minicomposites. Considering multiple damage mechanisms, e.g., matrix cracking, interface debonding, and fibers failure, a damage-based micromechanical constitutive model was developed to predict the tensile stress-strain response curves. Multiple damage parameters (e.g., matrix cracking stress, saturation matrix crack stress, tensile strength and failure strain, and composite’s tangent modulus) were used to characterize the tensile damage behavior in SiC/SiC minicomposites. Effects of multilayered interphase on the interface shear stress, fiber characteristic strength, tensile damage and fracture behavior, and strength distribution in SiC/SiC minicomposites were analyzed. The deposited multilayered (BN/SiC)n interphase protected the SiC fiber and increased the interface shear stress, fiber characteristic strength, leading to the higher matrix cracking stress, saturation matrix cracking stress, tensile strength and fracture strain.  相似文献   

11.
An experimental investigation was performed to study the rate at which strength-controlling fatigue damage evolves in a ceramic-matrix composite. Tensile specimens of a unidirectional SiC-fiber-reinforced calcium aluminosilicate matrix composite were cycled to failure or to a preselected number of cycles under similar loading histories. The residual strength of the precycled specimens was found to be similar to that of virgin specimens. Microstructural investigations showed that the fracture surfaces of the specimens cycled to failure had a central region where fiber pullout was negligible. It is proposed that frictional heating (due to interfacial sliding) is the cause of fatigue failure. High interfacial temperatures are assumed to cause the formation of a strong interface bond, leading to internal embrittlement.  相似文献   

12.
Interface strength and the character of fracture of bonds formed in the reaction of thermosetting binders with aramid (SVM, Armos, VMN-88) and polybenzothiazole (PBT) fibres are determined by the chemical affinity of adhesive and fibre and the ability of the binder to diffuse into the fibre. The strength of unidirectional composites based on these systems is not a function of the interface strength in many cases; the fibres themselves are the weak link in the composite.  相似文献   

13.
Abstract

A detailed numerical investigation has been carried out to investigate the effect of local fibre array irregularities on microscopic interfacial normal stress for transversely loaded unidirectional carbon fibre/epoxy composites with random fibre arrangement. Linear elastic finite element analyses were carried out for a two-dimensional image based model composed of 70 fibres. One fibre in this image based model is replaced with resin as the resin equivalent fibre, and the resulting change in microscopic interfacial normal stress distribution is investigated. Three fibres are selected for the resin equivalent fibres to clarify the individual local geometrical irregularity. Calculations were carried out for three loading conditions: case A, cooling of –155 K from the curing temperature; case B, transverse loading of 75 MPa chosen as an example of macroscopic transverse fracture strength and case C, both cooling from the curing temperature and transverse loading of 75 MPa. The effect of fibre array irregularities on the interfacial stress state is limited to the region between the resin equivalent fibre and its first neighbouring fibres. The contribution of the second neighbouring fibre is small and that of further fibres is negligible.  相似文献   

14.
Glass fibre reinforced cement (GRC) provides an interesting example of interaction between a brittle fibre and a porous brittle matrix which is reactive towards the reinforcement. It is also a case in which the composite fails by multiple fracture. The durability of GRC produced from ordinary Portland cement and an alkali-resistant glass fibre recently developed in the U.K., has been studied over a period of three years under different environmental conditions by measuring the variations in the mechanical properties of these composites with age. The experimental results are interpreted in terms of the micromechanics of failure for these composites and an assessment is made of the role of the interface in controlling the behaviour of the composite at various stages of its life. It is concluded that the properties of the interface in GRC change with time, partly due to chemical attack on the fibre which weakens the reinforcement but also due to changes in the physical properties of the fibre bundle and porosity and volume changes in the matrix as it sets and hardens. It has, however, not yet been possible to characterise the materials nature of the interface in GRC composites.  相似文献   

15.
The mechanical response of unidirectional composites subject to uniaxial transverse compressive loads was measured and analyzed by finite element simulation. Consistency in failure plane orientation was observed when comparing simulated matrix shear band angle to measured crack angle. A model based on hexagonal packing of fibers was proposed and the shear band angle was shown to depend on the fiber volume fraction. The effects of strong and weak fiber–matrix interfaces were considered using models with randomly distributed fibers for a valid statistical analysis. The results of these models showed that the composite compressive strength increased with the fiber loading for the strong interface case, while the strength was independent of the fiber loading for the weak interface case because of interface debonding. POLYM. COMPOS., 36:756–766, 2015. © 2014 Society of Plastics Engineers  相似文献   

16.
The effect of chemical bonding between phases of a glass matrix-metal composite on strength and fracture behavior was investigated. When no chemical bonding occurs, strengthening can be achieved through the mechanical formation of an interface between the dispersant and matrix. Even greater strengthening can be obtained by the formation of a chemical bond. Strengthening occurs by the limitation of the Griffith flaw size and is controlled by micromechanical stress concentrations developed on loading. Internal stresses developed on cooling from the fabrication temperature control the path of fracture. A chemical bond counteracts the micromechanical stress concentration and therefore increases the strength.  相似文献   

17.
The microstructure and elevated temperature mechanical properties of continuous carbon fibre reinforced ZrC and TaC composites were investigated. Silicon carbide was added to both compositions to aid sintering during hot pressing. Fibres were homogeneously distributed and no fibre degradation was observed at the interface with the ceramic matrix even after testing at 2100 °C. The flexural strength increased from 260 to 300 MPa at room temperature to ∼450 MPa at 1500 °C, which was attributed to stress relaxation. At 1800 °C, the strength decreased to ∼410 MPa for both samples. At 2100 °C plastic deformation resulted in lower strength at the proportional limit (210–320 MPa), but relatively high ultimate strength (370–440 MPa). The sample containing ZrC had a lower ultimate strength, but higher failure strain at 2100 °C due to the weak fibre/matrix interface that resulted in fibre-dominated composite behaviour.  相似文献   

18.
Macro-scale delamination and micro-scale fiber–matrix debonding events may notably affect the mechanical performance of fibrous composite elements. This article presents a two-dimensional finite-element (FE)-based formulation of interface of a small but finite thickness relying on the so-called linear elastic-brittle interface model (LEBIM) to be applied for simulation of an adhesive interface debonding and fiber–matrix decohesion failures. This modeling strategy is implemented in the commercial FE package ABAQUS by means of the user-defined subroutine UMAT. The practicability of the developed interface model is assessed through the comparison of the computational results with experimental data and with previous boundary element method (BEM) analyses using the LEBIM formulation. Specifically, LEBIM results for the interlaminar fracture toughness test showed an excellent agreement with experimental results (adhesive saw-tooth post-peak response was captured). Besides, studies of several micro-mechanical fiber–matrix configurations showed that fiber–matrix debonding events are the predominant failure mechanisms for moderate transverse loading values. The developed tool will certainly contribute to elucidate several open aspects regarding the interface crack behavior in fiber-reinforced composite materials.  相似文献   

19.
This work aims to assess the effect of maleic anhydride functionalized graphene oxide (MAH‐f‐GO) on the interfacial properties of carbon fibre/bismaleimide (BMI) composites by experimental and finite element (FE) methods. Transverse fibre bundle (TFB) specimens with different contents of MAH‐f‐GO nanoparticles were manufactured to investigate the interfacial strength of the carbon fibre/BMI composites. The fracture surface of the TFB specimens was examined by scanning electron microscopy to observe the morphologies of the fibre ? matrix interface. The coefficient of thermal expansion, cure shrinkage and elastic modulus were measured and included in the FE simulation. An FE analysis model was established to simulate the thermal residual stress distribution around the carbon fibre and to estimate the interfacial bonding strength of the TFB specimens. The combination of experimental and FE analysis results indicated that the addition of MAH‐f‐GO nanoparticles noticeably reduced the concentration of residual stress at the fibre ? matrix interface and enhanced the interfacial properties of the carbon fibre/BMI composites.© 2017 Society of Chemical Industry  相似文献   

20.
The ultimate tensile strengths of a unidirectional glass-matrix composite were measured as a function of fiber volume fraction. The results were compared with predictions, using a refined solution of the stress field generated by an axisymmetric damage model, which incorporated the effect of stress concentration in the fiber caused by the presence of a matrix crack both before and after deflection at the fiber/matrix interface. Two possible locations for the fiber failure were considered: (1) at a transverse matrix crack, near a bonded fiber/coating interface and (2) at the tip of a debond, at the fiber/coating interface. At low fiber volume fractions, the measured ultimate tensile strength matched the prediction calculated, assuming no crack deflection. For higher volume fractions, the predictions calculated for a debonded crack matched the observed values. The model results were relatively insensitive to debond length and interfacial shear stress for the range of values in this study. In comparison, the global load-sharing model, which does not account for the stress singularity at the fiber/matrix interface, was found to overpredict the values of the ultimate tensile strength for all fiber volume fractions. An important contribution of the present work was to introduce the use of fiber volume fraction as a parameter for testing theoretical predictions of the mode of fiber failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号