首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
为研究不同海拔下柴油机颗粒过滤器(diesel particulate filter,DPF)碳烟加载规律及再生特性,在一台高压共轨柴油机上分别在两种大气压力(80kPa和100kPa)下进行了试验研究。研究内容包括全球统一瞬态循环(world harmonized transient cycle,WHTC)排放测试、DPF碳烟加载及压降特性、DPF再生过程温度场及压降特性。结果表明:高原环境下DPF的排气温度和各项排放数据指标均高于平原环境。高原环境下压降损失随碳烟的累积呈现出先快速增加后缓慢增加的趋势。再生温度和海拔高度对DPF再生压降、载体再生峰值温度、载体再生径向和轴向温度梯度、再生时机均有影响;再生温度越高及海拔越低,DPF再生压降越高;再生温度及海拔越高,再生时载体的峰值温度越高且载体径向和轴向温度梯度越大。  相似文献   

2.
为了探究空间导叶和叶轮之间的径向安装间隙对泵性能影响规律,选择某VS1型太阳能高温熔盐泵首级部分作为研究对象,在其他几何参数不变的前提下,以原导叶和叶轮径向间隙值为基础,通过沿径向逐次改变导叶进口和叶轮之间的相对位置,共设计了6组不同间隙下的导叶-叶轮组合方案,基于CFD方法对6种间隙方案(1.5~6.5 mm),进行了全流场数值模拟,并试验验证了数值算法的可靠性。研究表明:导叶与叶轮径向安装间隙对泵扬程和效率在不同工况下的影响具有显著差异性,存在较优间隙使泵性能整体最佳,间隙过大、过小时都会致使其性能劣化;与原间隙2.5 mm时相比,合适的间隙可使叶轮出口和腔体间隙处的主频压力脉动幅值分别降低20.6%和36.4%,泵内介质流动稳定性提升;导叶内流道压力梯度和腔体涡核心分布随间隙改变呈不同变化态势,间隙为4.5 mm时,导叶内流道压力梯度变化更为均匀有序,腔体内涡的范围和强度较其它方案削弱明显,泵内流态最优。  相似文献   

3.
根据棚前至棚后12个横截面内的气动参数和沿叶高9个叶型的静压系数测量结果,分析了气流绕流叶棚损失增长的根源。实验结果证明:(1)在叶棚进口端壁附面层分离,形成复杂进口涡系;(2)在叶棚出口在径向压力梯度的作用下,主流、尾流、集中涡系和新生附面层相互掺混;是气流绕流叶棚损失增长的两个根源。  相似文献   

4.
The complex 3D flow in a steam turbine exhaust hood model with different inlet swirl and inlet total pressure radial distributions has been simulated by employing CFX-5 and analyzed in this paper. It's found that the inlet tangential flow angle at hub has a negative effect on the exhaust hood performance, while a negative gradient of inlet total pressure radial distribution has a positive impact on the hood performances. It's also numerically con- firmed that a proper distribution of total pressure at hood inlet can successfully eliminate the negative effects caused by the inappropriate inlet swirl distribution and improve the hood aerodynamic performance.  相似文献   

5.
The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines.The compressor is composed of inlet guide vanes,a backswept splittered unshrouded impeller,a splittered vaned radial diffuser and axial outlet guide vanes.Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate.This alternate flow pattern involves two adjacent vane passages.One passage exhibits very low momentum and a low pressure recovery,whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently.Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted.At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors.As the compressor is throttled the path to instability has been registered and a first scenario of the surge inception is given.The compressor first experiences a steady alternate stall in the diffuser.As the mass flow decreases,the alternate stall amplifies and triggers the mild surge in the vaned diffuser.An unsteady behavior results from the interaction of the alternate stall and the mild surge.Finally,when the pressure gradient becomes too strong,the alternate stall blows away and the compressor enters into deep surge.  相似文献   

6.
AnExperimentalStudyon3-DFlowinanAnnularCascadeofHighTurningAngleTUrbineBlades¥WangWensheng;LiangXizhi;ChenNaixing(Instituteof...  相似文献   

7.
在提升段净高为4.0 m、内径0.19 m的循环流化床冷态试验台上进行了快速床和气力输送两种流型中径向气体混合的试验研究,试验用物料为河沙,d_p=120 μm,真实密度ρ_s=2 400 kg/m~3.试验台颗粒循环流率(G_s)和流化风速(U_g)可独立控制,根据床层上、下部压力梯度随流化风速的变化关系判断快速流态化的存在区域.采用柱塞流模型,用CO_2作为示踪气体进行3种风速下的径向气体混合试验,得出了快速床和气力输送两种流型中气体径向扩散系数Dr随颗粒浓度变化的趋势.研究发现,在气力输送流型中Dr随颗粒浓度增加而减小,在快速床流型中Dr随颗粒浓度增加而增大.结合固体颗粒在不同流型中的存在状态解释了流型对Dr的不同影响作用.  相似文献   

8.
The present research study is carried out to study the performance characteristics of two noncircular journal bearing profiles. Experiments are conducted on a phosphorous bronze hydrodynamic journal bearing test rig to measure the circumferential oil film pressure as well as on the temperature profile at different radial loads and constant rotational speeds to measure bearing performance characteristics, such as oil flow rate, maximum temperature, and pressure. Results reported that noncircular bearings can withstand higher load and minimum power losses than circular bearings. Also, with an increase in the radial load, the oil film pressure and temperature also increased. However, a reduction in negative pressure gradient is reported along the circumference of the lobe resulting in lesser thermal degradation in comparison with the cylindrical bearing.  相似文献   

9.
邱浩  王树林  肖刚 《太阳能学报》2022,43(4):277-282
为获得斯特林发动机的动态特性和优化方案,将损失机制和压力梯度耦合进控制方程中,提出一维瞬态斯特林循环分析模型及分析方法,并针对GPU-3斯特林发动机进行模型验证和特性分析.模型的指示功率相对误差平均值约为4.8%,热效率的相对误差小于1%.当氦气工质在热源温度为977 K、平均压强为2.76 MPa时,输出功率随转速的...  相似文献   

10.
This paper presents the design methodology of a new wind turbine airfoil that achieves high performance in urban environment by increasing the maximum lift. For this purpose, an inverse method was applied to obtain a new wind turbine blade section with constant pressure-load along the chord, at the design inlet angle. In comparison with conventional blade section designs, the new airfoil has increased maximum lift, reduced leading edge suction peak and controlled soft-stall behaviour, due to a reduction of the adverse pressure gradient on the suction side. Wind tunnel experimental results confirmed the computational results.  相似文献   

11.
12.
为了研究下击暴流作用下塔式太阳能定日镜表面的风压分布特征,文章采用计算流体动力学方法对下击暴流作用下,不同径向位置和不同工作俯仰角的定日镜表面风压进行了数值模拟,并将模拟结果与大气边界层近地风作用下定日镜表面的风压特性进行了比较分析。分析结果表明:当定日镜正常工作时,下击暴流作用下,迎风面风压呈现出中间高两边低的分布趋势,风压峰值位于定日镜中部,背风面风压中间低两边高;随着俯仰角逐渐增大,下击暴流作用下,定日镜迎风面压力峰值中心从定日镜下边缘逐渐上移,最大压力值和高压区范围也逐渐增大,背风面负压值逐渐减小且谷值中心逐渐下移;与常规风相比,下击暴流作用下,定日镜表面风压受径向距离影响明显,当镜面垂直于地面时,定日镜迎风面和背风面表面风压随着定日镜与下击暴流风暴中心之间径向距离的增大而减小;在定日镜抗雷暴下击暴流强风的设计过程中,须要考虑下击暴流和常规风的速度场、气压场的不同,及其所导致的定日镜表面风压分布特征的变化。  相似文献   

13.
This paper describes the results of an experimental investigation into the effect of pressure gradient on the film cooling effectiveness from compound angle holes at both injection rows or the combination of one row of simple angle holes and one row of compound angle holes. Two pressure gradients were used in the range from −1.11 × 10−6 to +1.11 × 10−6.The presence of a favorable pressure gradient tends to increase the dilution of the injected coolant jets, which results in a reduction of the film cooling protection over the surface. The presence of an adverse pressure gradient at high blowing rate tends to dilute the film coolant even at a higher rate than that when zero or favorable pressure gradients are present.  相似文献   

14.
An axial-type fan that operates at a relative total pressure of 671 Pa and a static pressure of 560 Pa with a flowrate of 416.6 m3/min is developed using an optimization technique based on the gradient method. Prior to the optimization of the fan blade, a three-dimensional axial-type fan blade is designed based on the free-vortex method along the radial direction. Twelve design variables are applied to the optimization of the rotor blade, and one design variable is selected for optimizing a stator which is located behind the rotor to support a fandriving motor. The total and static pressure are applied to the restriction condition with the operating flowrate on the design point, and the efficiency is chosen as the response variable to be maximized. Through these procedures, an initial axial-fan blade designed by the free vortex method is modified to increase the efficiency with a satisfactory operating condition. The optimized fan is tested and compared with the performance obtained with the same class fan to figure out the optimization effect. The test results show that the optimized fan not only satisfies the restriction conditions but also operates at the same efficiency even though the tip clearance of the optimized fan is greater than 30%. The experimental and numerical tests show that this optimization method can improve the efficiency and operating pressures on axial-type fans.  相似文献   

15.
Water removal from the gas diffusion layer (GDL) is crucial for the efficient operation of proton exchange membrane (PEM) fuel cell. Static pressure gradient caused by the fast reactant flow in the flow channel is one of the main mechanisms of water removal from GDL. Reactant can leak or cross directly to the neighboring channel via the porous GDL in the cells with serpentine flow channel and many of its modifications. Such cross flow plays an important role for the removal of liquid water accumulated in the GDL especially under land area. To investigate the characteristics of liquid water behavior in the GDL under pressure gradient, the fibrous porous structure of the carbon paper is modeled by three dimensional impermeable cylinders randomly distributed in the in-plane directions and unsteady two-phase simulations are conducted. It is shown that the permeability from the numerical model matches well the experimental measurements of the common GDLs in the literature. The contact angle and pressure gradient are the key parameters that determine the initiation and the process of liquid water transport in the GDL which is initially wet with stagnant liquid water. It has been observed that the larger contact angle results in faster water removal from the GDL. Numerical simulations are performed for a wide range of pressure gradient with different contact angles to determine the minimum pressure gradient that initiates the liquid water transport in the GDL. It is found that the amount of pressure gradient caused by the cross flow is sufficient and effective to get rid of the liquid water accumulated in the GDL. The simulation results are also compared with experimental data in literature showing a good agreement. The characteristics of liquid water discharging from the gas diffusion layer are also described.  相似文献   

16.
A numerical study was conducted of the transition region of an axisymmetric isothermal jet, from 10 to 44 diameters downstream of the nozzle exit. The transition region is of particular interest because if offers an opportunity to examine the relationship among physical quantities in a developing flow. A model for the Reynolds cross-stress terms was developed from empirical correlations of mean velocity. It was then used, along with correlations for RMS velocities, to numerically predict pressure in the developing region. This turbulence model is more accurate than experimental measurements in high Reynolds number, transitional flows because the scales of turbulence in these conditions are too small to resolve experimentally. Numerical results show that close coupling exists between the mean axial velocity and the Reynolds cross-stresses. Similarly, a close relationship exists between the axial and radial RMS velocity fluctuations and the developing pressure gradients in the axial and radial direction. Therefore, when the mean velocities reach fully similar form, similarity of Reynolds cross stresses is also required. The axial and radial fluctuations continue to develop, and asymptotically approach similar forms at rates closely matching the decay of the mean pressure gradients. The information presented here can be used to test turbulence models applied to developing flows.  相似文献   

17.
An axial-type fan that operates at a relative total pressure of 671Pa and a static pressure of 560Pa with a flowrate of 416.6m3/min is developed using an optimization technique based on the gradient method. Prior to the optimization of the fan blade, a three-dimensional axial-type fan blade is designed based on the free-vortex method along the radial direction. Twelve design variables are applied to the optimization of the rotor blade, and one design variable is selected for optimizing a stator which is located behind the rotor to support a fan-driving motor. The total and static pressure are applied to the restriction condition with the operating flowrate on the design point, and the efficiency is chosen as the response variable to be maximized. Through these procedures, an initial axial-fan blade designed by the free vortex method is modified to increase the efficiency with a satisfactory operating condition. The optimized fan is tested and compared with the performance obtained with the same class fan to figure out the optimization effect. The test results show that the optimized fan not only satisfies the restriction conditions but also operates at the same efficiency even though the tip clearance of the optimized fan is greater than 30%. The experimental and numerical tests show that this optimization method can improve the efficiency and operating pressures on axial-type fans.  相似文献   

18.
This work is to experimentally and theoretically explore the hydrogen cloud explosion subjected to external turbulence. In the experiments, the flame characteristics and explosion pressure are obtained using high-speed camera and pressure sensor. In the theoretical calculation, the peak explosion pressure is obtained using LM, LMIET and TM method. The results indicated that most flame characteristics in the experiments are located in the zone of wrinkled flamelets. The explosion-related parameters including flame propagation velocity, peak explosion pressure and peak rate of pressure rise continue to increase as the gear level increases from G0 to G3, increase firstly and then decrease as the equivalence ratio increases from Φ = 0.5 to Φ = 3.0. Due to ignoring flame acceleration propagation induced by flame instabilities, external turbulence and flame-induced turbulence, the peak explosion pressure obtained using experimental method is significantly larger than that obtained using LM method. Owing to considering the limit value of flame wrinkling level induced flame instabilities and flame-induced turbulence, the peak explosion pressure obtained using experimental method is significantly lower than that obtained using LMIET and TM method.  相似文献   

19.
基于径向基函数神经网络的内燃机气缸压力识别   总被引:10,自引:2,他引:8  
提出了一种新的利用内燃机缸盖振动信号识别气缸压力的径向基函数(radial basis function,RBF)神经网络方法。首先,给出了该方法的实现原理与步骤,并根据内燃机的工作特性,对径向基函数神经网络的参数进行了有效的设置,建立了完整的内燃机缸盖振动信号与气缸压力之间的非线性映射关系;然后,对试验数据进行了处理。结果表明,这种方法不仅在压力波形而且在特征点的数值上都具有较高的识别精度并有较强的鲁棒性。最后,对有关问题进行了讨论。  相似文献   

20.
为研究致密砂岩气藏储层特殊渗流机理及压裂后储层渗流特征,运用岩心流动实验装置,测定新场气田须家河组气藏基质及造缝岩心样品在不同驱替压力下的可动水饱和度及渗透率,并依据实验结果,分析不同束缚水饱和度下渗透率随压力平方梯度变化规律,分析了基质及造缝岩心样品气体低速渗流特征.基质岩心渗流特征曲线表明,高束缚水饱和度条件下,气体渗流曲线表现为以启动压力梯度效应为主过渡到以滑脱效应为主,最后达到拟线性渗流状态的复合型渗流特征;低束缚水饱和度条件下,启动压力梯度效应不明显,表现出一定的气体滑脱现象;渗透率对启动压力有明显影响,随渗透率的增加,启动压力梯度急剧降低,对致密砂岩气藏,滑脱效应和启动压力梯度效应共同作用,且二者作用程度的变化导致气体渗流的复杂化和流态的多变性,气体渗流具有复合型渗流规律,而造缝岩心在不同含水饱和度条件下基本上未出现启动压力现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号