首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
等离子涂层孔隙研究进展   总被引:10,自引:0,他引:10  
总结了等离子涂层孔隙形成原因,孔隙率的测试,孔隙率对涂层弹性模量、热导率、残余应力的影响;介绍了喷涂工艺参数对孔隙率影响及涂层形成过程的数值模拟.目前主要以涂层的孔隙率作为研究重点,但孔隙率仅代表了涂层的密实程度,应进一步研究等离子涂层中孔隙的形状、大小及其对涂层性能的影响以及影响涂层孔隙结构的主要工艺参数.  相似文献   

2.
以3%(摩尔分数)Y2O3稳定的ZrO2为原料、异丁烯与马来酸酐共聚物(Isobam-104)为分散剂和凝胶剂、十二烷基三甲基氯化铵(DTAC)为发泡剂,采用球磨发泡法制备出氧化钇稳定的氧化锆(YSZ)多孔陶瓷。研究浆料固含量对YSZ多孔陶瓷制品孔隙结构和压缩强度的影响规律,以及压缩失效机制变化特点。结果表明:在相近发泡率的条件下,固含量在30.5%~33.5%(体积分数)范围内小幅度增加时,所制备的YSZ多孔陶瓷的总孔隙率和平均孔胞尺寸逐渐减小,压缩强度增加;所制备的样品的总孔隙率为79.9%~88.4%,压缩强度为4.7~17.2 MPa,材料的压缩强度与总孔隙率之间的关系同Rice模型相符合;在压缩载荷作用下YSZ多孔陶瓷呈现伪塑性变形,失效破坏的主要形式为剪切破坏。  相似文献   

3.
采用凝胶注模成型工艺制备了多孔羟基磷灰石陶瓷,并通过X射线分析了多孔陶瓷的相成分,采用扫描电镜观测了孔隙结构和形貌.结果表明,所制备的多孔羟基磷灰石陶瓷的孔隙率均大于80%;孔隙尺寸主要分布在350~600μm,孔壁上存在孔径为60~190μm的贯通孔;X射线衍射证明烧结过程未引入异质成分.所制备的多孔羟基磷灰石陶瓷具有适宜的孔隙直径和孔隙率,且孔隙间具有良好的贯通性.  相似文献   

4.
依据由电子束物理气相沉积法(Electron Beam Physical Vapor Deposition,EB-PVD)制备的ZrO2-7%(质量分数)Y2O3(Yttria Stabilization Zirconia,YSZ)涂层显微分析结果,采用统计学方法和随机介质理论建立了涂层的随机孔隙模型。针对孔隙率分别为0%,5%,10%且具有不同孔隙形貌的涂层模拟结果,采用数值计算方法得到不同孔隙率及孔隙形貌差异引起的纵波声速变化。结果表明:含孔隙涂层纵波声速明显减小,与致密涂层相比,孔隙率为5%和10%的YSZ涂层,纵波声速分别减小14.4%和23.9%。此外,孔隙率恒定时,孔隙形貌变化也会引起超声纵波速度波动,对于孔隙率5%和10%的涂层,声速波动分别为5.0%和6.8%,该模拟计算结果与对应孔隙率的实验测量结果5.9%和7.5%是相当的。  相似文献   

5.
以油茶果壳、硅粉和酚醛树脂为原料,经热压成型、高温原位反应烧结工艺制备油茶果壳基SiC陶瓷。采用热重-示差扫描量热(thermogravimetric-differential scanning calorimetry, TG-DSC)分析研究油茶果壳粉和酚醛树脂的裂解行为;通过X射线衍射仪、扫描电子显微镜、三点弯曲法和阿基米德排水法表征SiC陶瓷物相组成和微观组织,分析SiC陶瓷的抗压强度和孔隙率,基于表征分析结果探讨Si含量对油茶果壳基SiC陶瓷物相组成、微观结构、抗压强度和孔隙率的影响。结果表明:油茶果壳基SiC陶瓷由主晶相β-SiC和游离的Si组成,孔隙结构发达,孔洞呈蜂窝状,大小均匀,孔隙率高(>50%),抗压强度良好(12~18 MPa),随Si含量的增加,孔隙率与抗压强度先增大后减小。  相似文献   

6.
热障涂层的残余应力是影响其服役寿研究不多.在45钢基体上,用超音速火焰喷涂NiCocrAlY打底层,再用大气等离子喷涂ZrO2-8%(质量分数)Y2O3(8YSZ)工作层,制备了纳米结构与传统结构2种类型的热障涂层(TBC).采用SEM、XRD对这2种涂层的粉末及涂层进行了组织结构分析,用纳米压痕仪测得了2种涂层的弹性模量.用X射线衍射应力测试仪测得了2种涂层的表层残余应力.结果表明:喷涂工艺参数相同条件下,对于打底层及工作层的厚度均相同的2种涂层,纳米结构热障涂层的表层残余应力比传统结构热障涂层约低24.7%;相同打底层的纳米结构热障涂层表层残余应力随着陶瓷层厚度增加而增加,陶瓷层厚度在240 um以下时,表层为残余压应力;厚度超过300 um时,表层为残余拉应力.最后提出了相应的物理力学模型.  相似文献   

7.
采用PASCAN-64型水浸超声设备并配合扫描电镜对8wt %Y2O3-ZrO2(8YSZ)双层热障涂层热震过程中内部组织结构演变进行了检测。结果表明, 当超声波从垂直陶瓷层方向入射至粘结层反射所获得的回波信号影像主要反映了陶瓷层组织结构演变, 从垂直基底方向入射至粘接层/陶瓷层界面处反射所获得的回波信号影像主要反映了热生长氧化物层组织结构演变, 从垂直陶瓷层方向透射整个试片所获得的回波信号影像综合反映了整个涂层组织结构演变。当陶瓷层中均匀分布着孔隙率<11%、最大横向尺寸<50 μm的孔隙以及热生长氧化物层主要为致密的α-Al2O3时, 回波信号的幅值dB<0, 反映在影像中的信号分布均匀, 表明涂层处于良好状态。当陶瓷层中均匀分布着孔隙率>44%、最大横向尺寸>100 μm的孔隙以及热生长氧化物层主要为具有稀疏结构且厚度>5.2 μm的Cr、Co氧化物时, 回波信号的幅值dB>0的区域连接成片, 则预示着涂层即将失效或已失效。可见, 水浸超声技术能够较准确地反映热障涂层内部组织结构演变, 是一种较好的热障涂层内部缺陷的无损检测方法。  相似文献   

8.
等离子喷涂Al2O3+13%TiO2陶瓷涂层的组织结构及其耐磨性   总被引:4,自引:0,他引:4  
本文用X射线衍射、扫描电镜等研究了等离子喷涂Al2O3+13%TiO2(质量分数)陶瓷涂层的相结构、相组成及其组织特征.陶瓷涂层孔隙率低,致密程度较高,以亚稳相γ-Al2O3为主要相,同时存在α-Al2O3和金红石TiO2.富Al2O3区与富TiO2区呈明显相互交迭的层状结构,且存在相互成分扩散.另外,涂层设计对硬度有一定影响,TiO2的引入提高了涂层的耐磨性.  相似文献   

9.
为了探索六钛酸钾热障涂层的制备工艺,通过正交试验分析方法,采用等离子喷涂工艺制备了钛酸钾热障涂层.研究了喷涂工艺对涂层物相结构的影响,采用定量金相分析了涂层组织.结果表明:喷涂工艺对涂层的物相结构有显著影响,随喷涂工艺的改变,涂层由类似于八钛酸钾的某种结构转变为以六钛酸钾结构为主的相结构;涂层孔隙分布均匀,孔隙率在10%左右.  相似文献   

10.
采用聚碳硅烷和SiC粉体为原料低压成型低温烧结制备SiC多孔陶瓷,研究了聚碳硅烷含量对SiC多孔陶瓷性能的影响。SEM分析表明,聚碳硅烷裂解产物将SiC颗粒粘结起来,多孔陶瓷具有相互连通的开孔结构。烧成SiC多孔陶瓷的孔隙孔径为单峰分布、分布窄,室温至800℃之间多孔陶瓷的平均热膨胀系数为4.2×10-6 K-1。随着聚碳硅烷含量的增大,SiC多孔陶瓷的孔隙率降低、三点弯折强度增大,当聚碳硅烷质量分数为10%时分别为44.3%和31.7MPa。  相似文献   

11.
Porous copper whose long cylindrical pores are aligned in one direction has been fabricated by unidirectional solidification of the melt in a mixture gas of hydrogen and argon. The compressive yield strength of the porous copper with the cylindrical pores orientated parallel to the compression direction decreases linearly with increasing porosity. For the porous copper whose pore axes are perpendicular to the compressive direction, the compressive yield strength slightly decreases in the porosity range up to 30% and then decreases significantly with increasing porosity. The compressive stress–strain curves depend on the compressive direction with respect to the pore direction, which are due to the stress concentration around the pores and the buckling of the copper between the pores. From two different types of stress–strain curve, the energy absorption capacity of the porous copper with the pores parallel to the compressive direction is higher than that perpendicular to the compressive direction at a given porosity.  相似文献   

12.
Plasma sprayed coatings contain relatively large amount of pores. This is primarily due to the nature of deposition by the liquid droplets upon impact. This paper reports the modifications made in the pore size distribution of plasma sprayed yttria stabilized zirconia (YSZ) and Ti-6Al-4V/hydroxyapatite (HA) composite coatings following hot isostatic pressing (HIP). The pore size distribution was measured by a mercury intrusion porosimeter (MIP). The results indicated that the YSZ coatings which were HIPed for 1 hour and 3 hours in the temperature range 1000° to 1200°C and ∼185 MPa showed a small decrease in the average porosity (∼2.5%) for the 1 hour samples. However, the hardness increased ∼39%, and there was a corresponding increase in the coating density. This was due to reduction of the average pore size in the HIPed coatings. Thus, in the YSZ coatings, the pores responded to HIP by a general breakdown of large pores to smaller ones and effectively forming many 'new' interparticle contacts. Whilst the overall porosity was reduced marginally, the increase in physical property like hardness was significant because of the increase in interparticle and inter-lamellae contacts following HIP treatment. In the Ti-6A1-4V/HA composite coatings, the reduction of pores is most significant amongst the small pores. The porosity of the as sprayed 20 wt% HA composite was ∼19%. This value was reduced to 17% for the sample HIPed at 1,000%C for 1 hour. Although the reduction was relatively minor, the interesting aspect was the drastic reduction of small pores less than 0.3 μm. The average pore diameter was observed to increase from 0.1676 μm in the as sprayed coating to 0.787 μm in the sample HIPed at 1,000°C, as a result of the elimination of the micro-pores. Physical properties such as microhardness, Young's modulus and density increased substantially. This is believed to be aided mainly by the plastic deformation of the ductile Ti-6A1-4V phase during HIP. Thus modification of the pore size distribution or even average pore size can elicit substantial improvement in the properties in two different material coating, albeit the difference in the manner the modification occur.  相似文献   

13.
添加成孔剂法制备孔径、气孔率可控的多孔玻璃陶瓷   总被引:7,自引:0,他引:7  
和峰  刘昌胜 《无机材料学报》2004,19(6):1267-1276
研究了采用添加成孔剂法制备具有相互贯通气孔的多孔生物玻璃陶瓷的方法及其性能.多孔玻璃陶瓷主晶相为氟磷灰石和β-硅灰石,气孔率在49%-82%间连续可控,气孔由成孔剂热解排除形成的球形宏观孔(孔径200-850μm)和玻璃粉体烧结形成的微观孔(孔径2-4μm)组成,宏观孔孔径取决于成孔剂粒径并通过孔壁上的孔洞(孔径50-300μm)相互连通.塑性成孔剂硬脂酸受压产生塑性变形,添加硬脂酸的素坯强度高、可加工,烧结产物强度较高、气孔为扁球状;刚性成孔剂聚苯乙烯受压产生弹性变形,添加聚苯乙烯的素坯疏松、不可加工,烧结产物强度较低、气孔呈圆球状.成形压力对添加塑性成孔剂的样品性能影响显著,而对添加刚性成孔剂的样品性能无显著影响.气孔率与成孔剂的含量成良好的线性关系,通过控制成孔剂粒径和加入量可达到气孔率、孔径可控的目的.孔径一定时抗压强度与总气孔率成良好的二次曲线关系.  相似文献   

14.
The effect of the pore shape on the thermal conductivity of porous media is studied in this work, considering random and aligned distributions of spheroidal pores within the matrix. This is done by using the Bruggeman differential effective medium theory which is suitable for pores with different sizes, as is usually the case of practical interest. The obtained results can be applied for porous media with low as well as high porosities, and they show that: (1) the effect of the pore shape becomes stronger as the porosity increases. (2) The thermal conductivity for randomly oriented pores takes its maximum value for spherical pores and this value is the geometric average of the thermal conductivities along the three principal axes of the pores, when they are aligned. (3) In the case of aligned pores, the thermal conductivity along a principal axis increases with its length, in such a way that it is larger along the principal axis with longer dimensions. The predictions of the proposed approach are in good agreement with reported data and are expected to be useful to provide insights on the thermal behavior of porous media.  相似文献   

15.
Lotus‐type porous metals whose long cylindrical pores are aligned in one direction were fabricated by unidirectional solidification in a pressurized gas atmosphere. The pores are formed as a result of precipitation of supersaturated gas when liquid metal is solidified. The lotus‐type porous metals with homogeneous size and porosity of the evolved pores produced by a mould casting technique are limited to the metals with high thermal conductivity. On the other hand, the pores with inhomogeneous pore size and porosity are evolved for metals and alloys with low thermal conductivity such as stainless steel. In order to obtain uniform pore size and porosity, a new “continuous zone melting technique” was developed to fabricate long rod‐ and plate‐shape porous metals and alloys even with low thermal conductivity. Mechanical properties of tensile and compressive strength of lotus‐type porous metals and alloys are described together with internal friction, elasticity, thermal conductivity and sound absorption characteristics. All the physical properties exhibit significant anisotropy. Lotus‐type porous iron fabricated using a pressurized nitrogen gas instead of hydrogen exhibits superior strength.  相似文献   

16.
Most concrete produced today contains admixtures. Superplasticizers (SP) are used for the purpose of improving workability and reducing the water to cement ratio; therefore producing more durable concrete. SP cause better dispersion even at high water to cement ratio. Although SP improves the dispersion of particles, it is not quite clear how the addition of SP affect the porosity and pore size distribution of cement paste. The purpose of this study was to examine the influence of one type of SP on porosity and pore size distribution under different curing regimes. Paste specimens with and without SP were prepared at constant water to cement ratio of 0.45. Specimens were cured for 28 days and some for six months. Specimens were exposed to high temperature (45°C) and normal temperature curing (20°C) and also subjected to different relative humidities (100%, 55% and 25%). Curing at high temperature was carried out to simulate temperature in hot climates. Tests on porosity and pore size distribution were conducted using mercury intrusion porosimetry. The results show that the inclusion of SP decreases the total intruded pore volume of paste. The dominant pore diameter, however, does not seem to be affected and the percentage of pores smaller than 100 nm increases in the presence of SP.  相似文献   

17.
In this paper, porous sintered glass bead packings are studied, using X-ray Computed Tomography (XRCT) images at \(16\,\upmu \hbox {m}\) voxel resolution, to obtain not only the porosity field, but also other properties like particle sizes, pore throats and the permeability. The influence of the sintering procedure and the original particle size distributions on the microstructure, and thus on the hydraulic properties, is analyzed in detail. The XRCT data are visualized and studied by advanced image filtering and analysis algorithms on to the extracted sub-systems (cubes of different sizes) to determine the correlations between the microstructure and the measured macroscopic hydraulic parameters. Since accurate permeability measurements are not simple, special focus lies on the experimental set up and procedure, for which a new innovative multi-purpose cell based on a modular concept is presented. Furthermore, segmented voxel-based images (defining the microstructure) are used for 3D (three-dimensional) lattice Boltzmann simulations to directly compute some of the properties in the creeping flow regime. A very good agreement between experimental and numerical porosity and permeability could be achieved, in most cases, validating the numerical model and results. Porosity and permeability gradients along the sample height could be related to gravity acting during sintering. Furthermore, porosity increases in the outer zones of the samples due to the different contact geometry between the beads and the confining cylinder wall during sintering (which is replaced by a membrane during permeability testing to close these pores at the surface of the sample). The influence of different filters on the gray scale distributions and the impact of the segmentation procedure on porosity and permeability is systematically studied. The complex relationships and dependencies between numerically determined permeabilities and hydraulic influence parameters are investigated carefully. In accordance to the well-known Kozeny–Carman model, a similar trend for local permeability values in dependence on porosity and particle diameter is obtained. Other than statistical models, which estimate the pore throat distribution on the basis of the particle size distribution, in this study XRCT scans are used to determine the pore throats in sintered granular systems, which are finally linked to the intrinsic permeability through the lattice Boltzmann simulations. From the \(\mu \)XRCT analysis two distinct peaks in pore throat distributions could be identified, which can be clearly assigned to typical pore throat areas occurring in polydisperse granular systems. Moreover, a linear dependency between average pore throat diameter and porosity as well as between permeability and pore throat diameter is reported. Furthermore, almost identical mean values for porosity and permeability are found from sub-system and full-system REV analysis. For sintered granular systems, the empirical constant in the classical Kozeny–Carman model is determined to be 131, while a value of 180 is expected for perfect mono-disperse sphere packings.  相似文献   

18.
Lee W  Kim JC 《Nanotechnology》2010,21(48):485304
A new anodization method for the preparation of nanoporous anodic aluminum oxide (AAO) with pattern-addressed pore structure was developed. The approach is based on pulse anodization of aluminum employing a series of potential waves that consist of two or more different pulses with designated periods and amplitudes, and provides unique tailoring capability of the internal pore structure of anodic alumina. Pores of the resulting AAOs exhibit a high degree of directional coherency along the pore axes without branching, and thus are suitable for fabricating novel nanowires or nanotubes, whose diameter modulation patterns are predefined by the internal pore geometry of AAO. It is found from microscopic analysis on pulse anodized AAOs that the effective electric field strength at the pore base is a key controlling parameter, governing not only the size of pores, but also the detailed geometry of the barrier oxide layer.  相似文献   

19.
A. Butera 《Granular Matter》2001,3(1-2):93-96
Interest in artificially grown nanostructures has grown enormously in the last few years because of the potential applications in the magnetic recording industry. In this work we present ferromagnetic resonance investigations performed on Fe films sputter-deposited on nanochannel alumina (NCA). These films form a network-like nanostructure on top of the walls that separate the pores. The geometry is fixed by the channel size, the porosity of the substrate and the film thickness. From the experimental results in NCA of 20 nm pore diameter we have found that thinner films (10 nm or less) are discontinuous and formed by isolated, partially oriented anisotropic particles. An average aspect ratio of ∼1.5 was estimated for the particles forming the film. As the film thickness increases the effective anisotropy (mostly shape anisotropy) tends to reach a saturation value for films thicker than 75 nm. For NCA substrates of larger pore diameter (100 nm and 200 nm pore size) the effective anisotropy is greatly reduced and even changes orientation for the thinner films. This behavior is interpreted as comming from a faster filling of the pores with the sputtered material in the substrates with smaller pore size. Received: 30 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号