首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The antifungal activity of six carbon nanomaterials (CNMs, single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), reduced graphene oxide (rGO), fullerene (C60) and activated carbon (AC)) against two important plant pathogenic fungi (Fusarium graminearum (F. graminearum) and Fusarium poae (F. poae)) was evaluated. SWCNTs were found to show the strongest antifungal activity, followed by MWCNTs, GO, and rGO, while C60 and AC showed no significant antifungal activity. The antifungal mechanism of CNMs was deduced to target the spores in three steps: (i) depositing on the surface of the spores, (ii) inhibiting water uptake and (iii) inducing plasmolysis.  相似文献   

2.
Oligothiophene (nTP, n = 1, 2, 3) has been used as the reductant for the first time in the preparation of graphene by the reduction of graphene oxide (GO). A simple single-step chemical approach has been developed to reduce and/or functionalize GO with nTP. The reaction takes place at room temperature under stirring of a suspension of GO and nTP in MeCN. The nTP has been grafted onto the surface of GO by reacting epoxy groups together with the reduced graphene oxide (rGO). It was observed that increasing the thiophene ring (hereafter, thiophene is referred to as TP; 2,2′ bithiophene as 2TP; and 2,2′:5′,2″ terthiophene as 3TP) can enhance the reduction reaction. All instrumental experiments have confirmed that nTP not only covalently bonded to the GO but also partly restored the conjugate structure of GO, as a reducing agent. The resultant rGO with 3TP (rGO3TP) has been demonstrated to show remarkable electrocatalytic activity toward oxygen reduction reaction (ORR) compared to typical rGO. The observed ORR electrocatalytic activity induced by the intermolecular charge-transfer provides a general approach to various carbon-based metal-free ORR catalysts.  相似文献   

3.
A simple and facile method for multiscale, in-plane patterning of graphene oxide and reduced graphene oxide (GO–rGO) was developed by region-specific reduction of graphene oxide (GO) under a mild irradiation. The UV-induced reduction of graphene oxide was monitored by various spectroscopic techniques, including optical absorption, X-ray photoelectron spectroscopy (XPS), Raman, and X-ray diffraction (XRD), while the resultant GO–rGO patterned film morphology was studied on optical microscope, scanning electron microscope (SEM), and atomic force microscope (AFM). Flexible symmetric and in-plane supercapacitors were fabricated from the GO–rGO patterned polyethylene terephthalate (PET) electrodes to show capacitances up to 141.2 F/g.  相似文献   

4.
Graphene oxide (GO)/waterborne epoxy (EP) composites are prepared using an easy, all aqueous, in situ polymerization method. GO is reduced in situ using hydrazine to achieve highly stable reduced graphene oxide (rGO)/EP dispersions, leading to the formation of composites with a self-aligned layered structure and highly anisotropic properties between the direction of alignment and that perpendicular to it. The strong covalent bonding between the epoxy and rGO and the highly aligned, ultralarge rGO sheets give rise to a remarkable percolation threshold of 0.12 vol.%, as well as much improved mechanical, electrical and thermal properties of the composites in the alignment direction. They outperform those containing GO sheets that are bonded to the epoxy matrix through a weaker ππ stacking mechanism.  相似文献   

5.
Graphene/polybenzimidazobenzophenanthroline nanocomposites were prepared through the liquid-phase exfoliation of graphene oxide (GO) and reduced graphene oxide (rGO) in methanesulfonic acid with subsequent solution mixing. Various chemical and combined chemical-thermal methods were examined to be effective for producing rGO with highly graphitic structure and excellent electrical conductivity. Raman and X-ray photoelectron spectroscopy showed higher degree of reduction of the GO with the combined chemical-thermal method compared to other chemical reduction processes. Structural characterization of the nanocomposites by X-ray diffraction, scanning electron microscopy and transmission electron microscopy showed good exfoliation and dispersion of both GO and rGO fillers in the polymer matrix. The thermogravimetric analysis found that the nanocomposites with rGO have higher onset and maximum weight loss temperatures than those with GO. Compared with the pure polymer, the electrical conductivity of the nanocomposites containing 10 wt% GO and GO reduced by the combined chemical-thermal treatment showed a remarkable increase by four and seven orders of magnitude, respectively. Long-term in-situ thermal reduction was performed to further improve the conductivities of the nanocomposites.  相似文献   

6.
Oxidation debris (OD) and graphene oxide (GO) before and after OD removal were characterized by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, mass spectroscopy, X-ray diffraction, transmission electron microscopy and potentiometric titration, respectively. OD removal decreased GO absorption intensity in UV/Vis spectra, caused changes in peak position and absorption intensity in FTIR spectra, and resulted in the decrease of ID/IG in Raman spectra. OD was amorphous and had higher content of acidic groups than purified GO. OD contributed 10–25% of overall surface charge density to unpurified GO in spite of small amount (ca. 1% mass). OD removal decreased significantly GO dispersibility in aqueous solution, but increased obviously the electrical conductivity of reduced graphene oxide (rGO) and the apparent density of compacted rGO. The removal of OD was necessary because of its striking effects on both GO spectroscopic and macroscopic properties. Batch desorption in NaOH solution was recommended for OD removal from as-prepared graphite oxide because of slow OD desorption kinetics.  相似文献   

7.
Ates  Murat  Yildirim  Murat 《Polymer Bulletin》2020,77(5):2285-2307
Polymer Bulletin - In this work, reduced graphene oxide (rGO) was obtained by chemical reduction of graphene oxide (GO) using sodium borohydride (NaBH4). Four different nanocomposites rGO/ruthenium...  相似文献   

8.
This paper reports on a facile synthesis method for reduced graphene oxide (rGO)/multi-walled carbon nanotubes (MWNTs) nanocomposites. The initial step involves the use of graphene oxide to disperse the MWNTs, with subsequent reduction of the resultant graphene oxide/MWNTs composites using l-ascorbic acid (LAA) as a mild reductant. Reduction by LAA preserves the interaction between the rGO sheets and MWNTs. The dispersion-containing rGO/MWNTs composites was characterized and electrophoretically deposited anodically onto glassy carbon electrodes to form high surface area films for capacitance testing. Pseudo capacitance peaks were observed in the rGO/MWNTs composite electrodes, resulting in superior performance with capacitance values up to 134.3 F g?1 recorded. This capacitance value is higher than those observed for LAA-reduced GO (LAA-rGO) (63.5 F g?1), electrochemically reduced GO (EC-rGO) (27.6 F g?1), or electrochemically reduced GO/MWNTs (EC-rGO/MWNTs) (98.4 F g?1)-based electrodes.  相似文献   

9.
Efficiently reducible graphene oxide (GO) was obtained, even if a high degree of functionalization is present. Graphite with few defects was used as starting material and oxidized according to Hummer’s method. An extremely high ID/IG ratio for rGO of 2.8 (532 nm) was observed in the Raman spectrum as a consequence of the lower defect density in GO. It was also possible to demonstrate the impact of local defects on the structure in rGO by local laser exposure experiments on single graphene oxide flakes. Raman spectroscopy can visualize the laser impact by ID/IG ratio measurements.  相似文献   

10.
Graphene platelets were synthesized from pencil flake graphite and commercial graphite by chemical method. The chemical method involved modified Hummer's method to synthesize graphene oxide (GO) and the use of hydrazine monohydrate to reduce GO to reduced graphene oxide (rGO). rGO were further reduced using rapid microwave treatment in presence of little amount of hydrazine monohydrate to graphene platelets. Chemically modified graphene/polypyrrole (PPy) nanofiber composites were prepared by in situ anodic electropolymerization of pyrrole monomer in the presence of graphene on stainless steel substrate. The morphology, composition, and electronic structure of the composites together with PPy fibers, graphene oxide (GO), rGO, and graphene were characterized using X‐ray diffraction (XRD), laser‐Raman, and scanning electron microscopic (SEM) methods. From SEM, it was observed that chemically modified graphene formed as a uniform nanocomposite with the PPy fibers absorbed on the graphene surface and/or filled between the graphene sheets. Such uniform structure together with the observed high conductivities afforded high specific capacitance and good cycling stability during the charge–discharge process when used as supercapacitor electrodes. A specific capacitance of supercapacitor was as high as 304 F g?1 at a current density of 2 mA cm?1 was achieved over a PPy‐doped graphene composite. POLYM. ENG. SCI., 55:2118–2126, 2015. © 2014 Society of Plastics Engineers  相似文献   

11.
The current work reports the preparation and characterization of polyvinyl alcohol (PVA) composite fibres reinforced with graphene reduced from graphene oxide (GO) by using oligomeric proanthocyanidin (OPC) as a reductant. After reduction, most of the oxygen‐containing groups were removed from the GO and reduced graphene oxide (rGO) was prepared. As a result of combined OPC as a dispersant, rGO could be well dispersed in a dimethyl sulfoxide/H2O mixed solvent and in PVA matrix, and the PVA/rGO dispersion was wet spun followed by hot drawing to prepare continuous PVA/rGO composite fibres. The PVA/rGO composite fibres exhibited a significant enhancement of mechanical properties at low rGO loadings; in particular the tensile strength and Young's modulus of the 2.0 wt% rGO and PVA composite fibre increased to 244% and 294% respectively relative to neat PVA fibre. Moreover, the storage modulus (?10 °C) and Tg increased to 300% and 7.2 °C, respectively. © 2016 Society of Chemical Industry  相似文献   

12.
In this study, nanosheets including graphene oxide (GO) and reduced graphene oxide (rGO), were incorporated into natural rubber (NR), to study the effects of substituting GO or rGO for carbon black (CB) on the structure and performance of NR/CB composites. The morphological observations revealed the dispersion of CB was improved by partially substituting nanosheets for CB. The improvements in static and dynamic mechanical properties were achieved at small substitution content of GO or rGO nanosheets. With substitution of rGO nanosheets, significant improvement in flex cracking resistance was achieved. NR/CB/rGO (NRG) composites has a much lower heat build‐up value compared with NR/CB/GO (NG) composites at a high load of nanosheets. However, both GO and rGO tended to aggregate at a high concentration, which led to the poor efficiency on enhancing the dynamic properties, or even deteriorate the performance of rubber composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41832.  相似文献   

13.
Graphene and its derivatives exhibit many interesting photoluminescence (PL) properties because of their unique electronic structures. In spite of the absence of the bandgap, graphene shows PL due to hot electrons. Graphene oxide (GO) fluorescence is different from that of a single organic fluorophore, for which the spectral properties and emission lifetime are independent of wavelength. Single-layered GO sheets are made of a large number of covalently connected independent fluorophores of varying sizes. These fluorophores are aromatic π-conjugated sp2-hybridized subsystems of carbon atoms surrounded by sp3 regions. The PL of GO is pH dependent because of the presence of many oxygen-containing groups in GO sheets. Reduced graphene oxide (rGO) PL is somewhat different from GO because the number and size of sp2 fragments are increased in rGO due to the elimination of the functional groups containing oxygen via reduction. Nanosized graphene/GO possesses a strong quantum confinement effect and hence emits intense excitation wavelength-dependent PL. Moreover, graphene quantum dots show upconversion PL due to anti-Stokes transition. The diverse PL properties including the effect of reduction, pH, and solvent have been reported in many recent studies. Here, the versatile PL features of graphene derivatives are reviewed to elucidate the mechanism of PL.  相似文献   

14.
The curing kinetics of epoxy nanocomposites prepared by incorporating graphene oxide (GO) and chemically reduced graphene oxide (rGO) have been studied using isothermal and nonisothermal differential scanning calorimetry. The kinetic parameters of the curing processes in these systems have been determined by a Kamal and Sourour phenomenological model expanded by a diffusion factor. The predicted curves determined using the kinetic parameters fit well with the isothermal DSC thermograms revealing the proposed kinetic equation clearly explains the curing kinetics of the prepared epoxy amine nanocomposites. Experimental and modeling results demonstrate the presence of an accelerating effect of the GO on the cure of the resin matrix. The use of rGO instead of GO resulted in a slight acceleration reaction rate due to the reduced presence of oxidation groups in rGO. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44803.  相似文献   

15.
《Ceramics International》2016,42(12):14094-14099
The effect of graphene concentration on the photovoltaic and UV detector applications of ZnS/graphene nanocomposites was investigated. The nanocomposites were synthesized by a green, cost-effective, and simple co-precipitation method with different graphene concentrations (5, 10, and 15 wt%) using L-cysteine amino acid as a surfactant and graphene oxide (GO) powder as a graphene source. Transmission electron microscopy (TEM) images showed that the ZnS NPs were decorated on GO sheets and the GO caused a significant decrease in ZnS diameter size. The results of X-ray diffraction (XRD) patterns, Raman, and Fourier transform infrared (FTIR) spectroscopy indicated that the GO sheets were changed into reduced graphene oxide (rGO) during synthesis process. Therefore, L-cysteine amino acid played its role as a reducing agent to reduce the GO. Photovoltaic measurements showed that the graphene caused to increase the efficiency of solar-cell application of ZnS/rGO nanocomposites. In addition, our observation showed that the nanocomposites were suitable as ultraviolet (UV) detectors and graphene concentration increased the responsibility of the detectors.  相似文献   

16.
The graphene oxide (GO) was prepared by sonication‐induced exfoliation from graphite oxide, which was produced by oxidation from graphite flakes with a modified Hummer's method. The GO was then treated by hydrazine to obtain reduced graphene oxide (rGO). On the basis of the characterization results, the GO was successfully reduced to rGO. Acrylonitrile–butadiene rubber (NBR)–GO and NBR–rGO composites were prepared via a solution‐mixing method, and their various physical properties were investigated. The NBR–rGO nanocomposite demonstrated a higher curing efficiency and a change in torque compared to the gum and NBR–GO compounds. This agreed well with the crosslinking density measured by swelling. The results manifested in the high hardness (Shore A) and high tensile modulus of the NBR–rGO compounds. For instance, the tensile modulus at a 0.1‐phr rGO loading greatly increased above 83, 114, and 116% at strain levels of 50, 100, and 200%, respectively, compared to the 0.1‐phr GO loaded sample. The observed enhancement was highly attributed to a homogeneous dispersion of rGO within the NBR matrix; this was confirmed by scanning electron microscopy and transmission electron microscopy analysis. However, in view of the high ultimate tensile strength, the NBR–GO compounds exhibited an advantage; this was presumably due to strong hydrogen bonding or polar–polar interactions between the NBR and GO sheets. This interfacial interaction between GO and NBR was supported by the marginal increase in the glass‐transition temperatures of the NBR compounds containing fillers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42457.  相似文献   

17.
A self-assembly polymerization process was used to prepare graphene oxide/boron carbide (GO/B4C) composite powders, spark plasma sintering (SPS) was used to fabricate reduced graphene oxide/boron carbide (rGO/B4C) composites at 1800 °C and 30 MPa with a soaking time of 5 min. The effects of rGO addition on mechanical properties of the composites, such as Vickers hardness, flexural strength and fracture toughness, were investigated. The results showed that GO/B4C composite powders were successfully self-assembled and a network structure was formed at high GO contents. The flexural strength and fracture toughness of rGO/B4C composites were 643.64 MPa and 5.56 MPa m1/2, respectively, at 1 and 2.5 wt.% rGO content, corresponding to an increase of 99.11% and 71.6% when compared to B4C ceramics. Uniformly dispersed rGO in rGO/B4C composites played an important role in improving their strength and toughness. The toughening mechanisms of rGO/B4C composites were explained by graphene pull-out, crack deflection and bridging.  相似文献   

18.
《Ceramics International》2016,42(16):18181-18188
Homogeneously dispersed reduced-graphene-oxide (rGO) reinforced geopolymer composites were successfully prepared through in-situ reduction of graphene oxide (GO) under alkaline geopolymeric condition. The effects of treatment temperatures on the reduction of GO under the alkaline solution during the rGO/geopolymer preparation process were characterized systematically. The results showed that GO could be in situ reduced under alkaline geopolymer solution at various temperatures (25–80 °C) for 3 h. The reduction degree of rGO was improved with increasing the reaction temperature. The rGO was well dispersed, and the rGO/geopolymer composites showed amorphous structure.  相似文献   

19.
Homogeneous dispersion and strong filler–matrix interfacial interactions were vital factors for graphene for enhancing the properties of polymer composites. To improve the dispersion of graphene in the polymer matrix and enhance the interfacial interactions, graphene oxide (GO), as an important precursor of graphene, was functionalized with amine‐terminated poly(ethylene glycol) (PEG–NH2) to prepare GO–poly(ethylene glycol) (PEG). Then, GO–PEG was further reduced to prepare modified reduced graphene oxide (rGO)–PEG with N2H4·H2O. The success of the modification was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and Raman spectroscopy. Different loadings of rGO–PEG were introduced into polyimide (PI) to produce composites via in situ polymerization and a thermal reduction process. The modification of PEG–NH2 on the surface of rGO inhibited its reaggregation and improved the filler–matrix interfacial interactions. The properties of the composites were enhanced by the incorporation of rGO–PEG. With the addition of 1.0 wt % rGO–PEG, the tensile strength of PI increased by 81.5%, and the electrical conductivity increased by eight orders of magnitude. This significant improvement was attributed to the homogeneous dispersion of rGO–PEG and its strong filler–matrix interfacial interactions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45119.  相似文献   

20.
Polyviologen (PV)–reduced graphene oxide (rGO) nanocomposite films were fabricated by simple, one-step reductive electropolymerization of cyanopyridinium based precursor monomer (CNP) in an aqueous dispersion of graphene oxide (GO). Since the polymer formation and reduction of graphene oxide occurs within the same potential window, electrocodeposition method was preferred for obtaining nanostructured PV–rGO films. Cyclic voltammetry experiments of PV–rGO displayed two well resolved, reversible one-electron redox processes typical of viologen. Being a redox polymer, incorporation of rGO further enhances the electroactivity of the PV in the composite films. Vibrational spectral analysis with surface characterization revealed structural changes after composite formation along with subsequent reduction of GO within the polymer matrix. The PV–rGO nanostructured film exhibits a high-contrast electrochromism with low driving voltage induced striking color changes from transparent (0 V) to purple (−0.6 V), high coloration efficiency, fast response times and better cycling stability compared to a pristine PV film. This improved performance can be attributed to the high stability of the electrochrome in the composite assembly induced by electrostatically driven non-covalent interactions between redox PV2+ and negatively charged rGO, improved electrical conductivity and enlarged surface area accessed through reinforced nanostructured graphene sheets for tethering PV molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号