首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用电子显微镜研究了550℃,6h离子渗氮的35CrMo钢渗层的组织形貌和界面结构.结果表明,渗层外层为分层相间分布的ε+γ′条带状组织。在化合物内层的γ′相中有空位盘、位错、层错四面体和孪晶.ε相和γ′相之间的界面光滑且平直.除了观察到一个原子层结构台阶,也发现多个原子层高度的结构台阶.大量晶体缺陷的存在是加速离子渗氮过程的主要原因。  相似文献   

2.
使用电子显微镜研究了550℃,6h离子渗氮的35CrMo钢渗层的组织形貌和界面结构.结果表明,渗层外层为分层相间分布的ε+γ′条带状组织。在化合物内层的γ′相中有空位盘、位错、层错四面体和孪晶.ε相和γ′相之间的界面光滑且平直.除了观察到一个原子层结构台阶,也发现多个原子层高度的结构台阶.大量晶体缺陷的存在是加速离子渗氮过程的主要原因。  相似文献   

3.
为进一步提高渗层厚度及渗层性能,对45钢进行离子氮碳共渗与离子渗氮复合处理。采用扫描电镜、X射线衍射仪、显微硬度计和光学显微镜对渗层厚度、物相组成、截面与表面硬度、渗层脆性进行了分析。结果表明,复合处理可使45钢获得比单一离子渗氮或离子氮碳共渗更快的渗速、更优的性能。相同的处理时间下,复合处理渗层厚度比单一离子渗氮或离子氮碳共渗大幅度增加,有效硬化层比单一离子渗氮增加约35μm,提高约1倍,同时渗层脆性显著降低。物相分析表明复合处理后化合物层中ε相和γ'相的相对含量发生了变化,即ε相增多,而γ′相减少。  相似文献   

4.
周武  王敏  赵同新  卢军  杨旗 《金属热处理》2022,47(11):147-151
采用离子渗氮工艺对一种Fe-C-Cr-Ni-Mn-V沉淀硬化型奥氏体不锈钢进行表面改性处理。利用光学显微镜(OM)、X射线衍射(XRD)、电子探针显微分析仪(EPMA)和维氏硬度计对不同离子渗氮温度下渗层的组织和性能进行了研究。结果表明,Fe-C-Cr-Ni-Mn-V沉淀硬化型奥氏体不锈钢经430~520 ℃离子渗氮处理10 h后,试样表面均形成一层厚度均匀的渗氮层,表面硬度显著增大。随着离子渗氮温度的升高,渗层厚度增大,520 ℃渗氮时渗层厚度达到78 μm。当渗氮温度为430 ℃时,渗层表面主要由γN+CrN+γ′-Fe4N相组成;当渗氮温度升高至520 ℃时,渗层表面主要由γ′-Fe4N+CrN+ε-Fe2-3N相组成。在3种渗氮温度下,渗层中均有CrN析出,导致渗层耐蚀性低于基体组织。  相似文献   

5.
利用脉冲直流辉光等离子技术,对1Cr11Ni2W2MoV马氏体热强不锈钢进行不同工艺参数的离子渗氮。利用光学显微镜、显微硬度计、XRD对渗氮层的显微组织及硬度进行了分析。结果表明,在所选用的离子渗氮工艺参数下,1Cr11Ni2W2MoV钢渗层只由扩散层组成,渗氮温度≤560℃时,渗层主要由固溶N原子的α相组成,并伴有少量的γ'-Fe4N和CrN析出;随着渗氮温度的升高和渗氮时间的延长,固溶N原子的α相逐渐转变成γ'-Fe4N相,当处理温度达到590℃时,渗层主要由γ'-Fe4N和Cr N组成。离子渗氮后渗层的表面硬度较未渗氮前有显著的提高,在一定范围内,渗层的表面硬度和渗层深度都随着渗氮温度和渗氮时间的增加而增加,渗层硬度梯度分布也随着渗氮时间的延长变得平缓。  相似文献   

6.
对尺寸为10 mm×10 mm×3. 5 mm的55钢试样分别在470、500、530和550℃离子渗氮8 h。采用X射线衍射、光学显微镜、扫描电镜和显微硬度计检测了渗氮层的显微组织和硬度,目的是研究离子渗氮温度对55钢渗层组织和性能的影响。结果表明:55钢离子渗氮层的相组成主要为γ'相、ε相和少量的α-Fe相,且随着离子渗氮温度的升高,渗层中ε相的含量逐渐升高,γ'相和α-Fe相的含量逐渐降低;渗层深度与离子渗氮温度之间的关系可用公式X~2=9. 7×10~5·e~(-78 400/RT)·t表达。470℃离子渗氮的55钢表面硬度为821 HV0. 1,530℃离子渗氮的提高到了841 HV0. 1,但550℃渗氮的下降到了787 HV0. 1,这是由于温度升高后氮化物粗化和表面疏松所致。  相似文献   

7.
萧莉美  刘玉先 《物理测试》1999,(1):18-20,29
用透射电镜研究了稀土催渗渗离子渗氮层中的晶体缺陷。结果表明,稀土催渗使γ′-Fe4N晶粒显著细化,晶界面缺陷的增加有利于氮原子的扩散。在γ′-Fe4N晶粒内有许多尺寸较小的空位型Frank位错环及其蜷线位错和堆垛层错等晶体缺陷;扩散层铁素体中存在的高密度位错及位错环。大量空位的存在,以及位错吸引空位运动,是加速渗氮的主要原因。  相似文献   

8.
采用不同的回火温度、渗氮温度和N2与H2的比例,对35CrMo钢进行热处理,通过正交试验分析这些参数对渗氮层耐蚀性的影响。结果表明,最佳的耐蚀性热处理工艺为回火温度550℃、渗氮温度540℃、氮气与氢气流量比为1∶5。XRD分析表明白亮层组织以γ’相为主,并含一定量的α-Fe(N)和ε相,这种组织有很好的耐蚀性,且具有较小的的脆性。  相似文献   

9.
采用X射线衍射仪及光学显微镜分析了W18Cr4V高速钢离子氮碳共渗层的相结构,采用连续加载压入法研究了共渗层脆性。研究结果表明:在渗氮气氛中引入CH4进行离子氮碳共渗时,碳的渗入可抑制渗层中γ′Fe4N相的形成;渗层中γ′Fe4N相的减少,降低了ε与γ′相混合时的脆性。另一方面CH4的引入增加了碳化物相,会使脆性增加,综合效果取决于V(N2)/V(H2)值及CH4加入量。选择比例适当的N2、H2、CH4气氛,可使共渗层脆性较单纯渗氮小;当V(N2)∶V(H2)为3∶1时,随CH4量的增加,渗层深度增加至一定峰值之后下降。  相似文献   

10.
《铸造技术》2015,(12):2873-2876
采用等离子体渗氮技术对铸铁材料进行氮化处理,研究了渗氮前后铸铁的组织和性能变化。结果表明,当渗氮温度不变,保温时间为10~12 h时,渗层深度和显微硬度随着保温时间的延长而增大。保温时间不变,渗氮温度为560~600℃时,渗层深度和显微硬度随温度升高先增大后减小。在580℃渗氮时,铸铁的组织主要为γ′相和ε相,硬度值达到最大值。  相似文献   

11.
为调控离子渗氮渗层特性,获得少脆性化合物层、厚韧性扩散层的渗氮层,提高离子渗氮渗层抗冲击性和重载下的耐磨性,对 42CrMo 钢进行了添加微量钛的创新离子渗氮处理。 利用光学显微镜、SEM、XRD 和显微硬度计对渗层的截面显微组织、表面形貌和成分、物相和截面硬度进行了测试和分析。 结果表明:添加微量钛离子渗氮可显著改善渗层特性,获得少化合物层的高硬高韧渗氮层,同时显著提高离子渗氮效率。 在 540 ℃ ×4 h 工艺条件下,添加微量钛可使离子渗氮有效硬化层厚度显著增加,由常规离子渗氮的 225 μm 增加到 380 μm,即渗氮效率提高近 70%;有效硬化层厚度提高的情况下,化合物层厚度反而减薄,由常规离子渗氮的 19 μm 降低到 10 μm,即化合物层厚度降低了约 50%;渗层中化合物层与有效硬化层之比值由常规离子渗氮的 8. 5%降低到 2. 6%。 同时添加微量钛离子渗氮渗层中形成了高硬度强化相 TiN,使渗层表面硬度由 703 HV0. 05 提高至 895 HV0. 05 。 添加微量钛离子渗氮获得了薄化合物层、高硬高韧、厚有效硬化层的优良渗氮层特性,该渗层特性对改善离子渗氮零部件抗冲击性和重载下的耐磨性具有重要研究和应用价值。  相似文献   

12.
对OCr18Ni9奥氏体不锈钢进行氮氧共渗循环离子渗氮试验,并和常规离子渗氮进行对比.利用光学显微镜、显微硬度计、XRD及磨损仪对渗氮层进行分析.结果表明,氮氧共渗循环离子渗氮比常规离子渗氮的渗氮速度快,渗层比常规离子渗氮厚;表面硬度为920 HV0.05(比常规离子渗氮高20 HV0.05),硬度梯度平缓;渗层中的ε相减少,γ'相增多;且渗层中的微量Fe3O4降低了表面摩擦系数,使工件经氮氧共渗循环离子渗氮后获得更高耐磨性.  相似文献   

13.
通过对2CrB马氏体不锈钢进行离子渗氮、离子SNC共渗和稀土催渗离子SNC共渗三种工艺的对比试验.实验结果表明,稀土催渗离子SNC共渗工艺可有效地提高2CrB钢共渗层深度,增加渗层硬度.稀土元素的加入有利于γ′相的形成,减小ε相;明显地细化渗层组织;促进复合型(FeCr)_3(N,C)_2化合物弥散细小析出,弥散强化效果明显.2CrB鼓风机叶片经稀土催渗离子SNC共渗后,能够保证整个叶面的硬度HV_5≥800,渗层深度δ>0.25mm的技术要求.  相似文献   

14.
采用SEM和x射线薄膜掠射装置测定了工业纯铁在Fe-N共析温度以上两段离子渗氮层的组织形态和γ’a两相沿渗层深度的分布。发现对应渗层的亚共析成分区存在网状分布的γ’相并构成富γ’相域;带状的a相区与基体邻接。这两种反常组织是由第二段降温渗氮时γ/a界面反向迁移所致。  相似文献   

15.
为提高40Cr钢的抗磨及耐蚀性能,用304不锈钢冲孔板制成的活性屏对40Cr钢进行离子渗氮(ASPN)处理,研究了活性屏与工件的距离对渗层组织结构和性能的影响,并与普通直流离子渗氮(DCPN)进行了比较。用光学显微镜(OM)、X射线衍射仪(XRD)、辉光放电光谱仪(GDOES)、显微硬度计、往复摩擦磨损试验机和电化学工作站对渗层组织、相成分、硬度、耐磨及耐腐蚀性能进行分析。结果表明:经不锈钢活性屏离子渗氮处理后,试样表面得到了致密均匀的渗氮层,渗层主要由ε-Fe2-3N、γ′-Fe4N和CrN相组成,且随着试样与活性屏距离从10mm、20mm增加到30mm,对应的渗层厚度从6μm、4.7μm减小到3.5μm。经氮化处理后,40Cr钢的耐磨性和耐腐蚀性都有显著的提高,ASPN处理后试样的耐腐蚀性较DCPN有明显的提高。  相似文献   

16.
研究了不同渗氮时间下钛元素对42CrMo钢常规离子渗氮工艺的作用效果,表征分析了不同渗氮工艺下试样表面的渗层组织及性能。结果表明,钛催渗离子渗氮试样的表面硬度和渗层深度均明显高于常规离子渗氮。在535℃×3 h的工艺条件下,钛催渗离子渗氮试样渗层的表面硬度达到887.4 HV0.2,渗氮层厚度约为400μm。钛元素的加入促进了氮元素的渗透和扩散,在试样表面生成高硬度化合物TiN。相较于相同保温时间下的常规离子渗氮,钛催渗离子渗氮试样表面硬度提高了60 HV0.2,渗层厚度增加了80μm,渗氮效率提升了约25%。与常规离子渗氮相比,钛催渗离子渗氮工艺具有显著优势,不仅有利于改善渗层组织性能,增强渗氮效果,还提高了渗氮效率,使渗氮周期明显缩短。  相似文献   

17.
研究了预氧化对42CrMo钢离子渗氮的催渗作用及机理。采用光学显微镜、显微硬度计、XRD、SEM和接触角测量仪研究了渗氮层厚度、渗氮层物相、预氧化后表面形貌和表面自由能。结果表明,预氧化对离子渗氮具有明显的催渗作用,在300℃预氧化30 min后进行离子渗氮(500℃、4 h),化合物层厚度达到15μm,是不经预氧化处理的传统离子渗氮化合物层厚度的2倍以上;有效扩散层厚度达到最大值570μm,明显高于传统离子渗氮的有效扩散层厚度。研究还表明,300℃预氧化30 min后表面产生了大量纳米级氧化物颗粒和微裂纹、孔洞,同时接触角最小、表面自由能最大,离子渗氮阶段氧化物可以有效地转化为氮化物。由此推测预氧化催渗机理可能是表面纳米级氧化物颗粒和微裂纹、孔洞的形成,一方面有利于活性氮原子的吸附,从而促进化合层的形成,另一方面为氮原子提供的扩散通道,有利于扩散层的增加。  相似文献   

18.
304 不锈钢低温离子渗氮及氮碳共渗处理   总被引:1,自引:1,他引:0  
缪跃琼  林晨  高玉新  郑少梅  程虎 《表面技术》2015,44(8):61-64,102
目的研究304不锈钢离子渗氮层和氮碳共渗层的组织、硬度及耐磨、耐蚀性能,并考察渗层的磨损机理。方法利用离子渗氮及氮碳共渗工艺在304不锈钢表面获得硬化层,利用XRD,OM及共聚焦显微镜、显微硬度仪、电化学测试仪,分析处理前后渗层的组织、相结构及渗层的硬度及耐磨耐蚀性能。结果 304不锈钢氮碳共渗和渗氮层主要为S相层,在相同工艺条件下,氮碳共渗工艺获得的渗层为γN+γC的复合渗层,且厚度大于单一渗氮层。渗氮层和氮碳共渗层硬度约为基体硬度的3.5倍。在干滑动摩擦条件下,氮碳共渗层比渗氮层具有更好的耐磨性能;渗氮层的磨损机理为磨粒磨损的犁沟效应和断裂,氮碳共渗层的磨损机理为磨粒磨损的犁沟和微切削。电化学测试表明,渗氮层和氮碳共渗层的耐蚀性能均优于基体。结论 304不锈钢在420℃进行离子渗氮和氮碳共渗处理后,硬度和耐磨性能可大幅提高,且氮碳共渗处理效果更佳。  相似文献   

19.
对3Cr13钢在450 ℃氨气和氨氮混合气氛中分别渗氮4、8和12 h后的渗氮层进行了对比。利用光学显微镜、显微硬度计、X射线衍射仪、电化学工作站对渗氮层截面显微组织、显微硬度、相组成以及耐蚀性进行了表征。氨气渗氮层由化合物层和白亮层组成,而氨气和氮气混合气氛渗氮层中没有出现白亮层。氨气渗氮12 h后,渗氮层的表面硬度为1050.0 HV0.05;表面化合物层主要相为ε-Fe2-3N,次要相为γ′-Fe4N,出现了少量的CrN,白亮层相组成为γ′-Fe4N;渗氮后极化曲线钝化区变宽,自腐蚀电流密度减小,耐蚀性提高。氨氮混合气氛渗氮12 h后,渗层的表面硬度为998.0 HV0.05;气氛中N浓度升高,渗氮8 h后CrN含量增加,次要相由氨气渗氮8 h的γ′-Fe4N变为CrN;随着渗氮时间延长至12 h,渗层的自腐蚀电流密度降低,钝化区略有变宽,耐蚀性略有提高。  相似文献   

20.
00Cr12Ni9Mo4Cu2Ti马氏体时效不锈钢离子渗氮组织和性能   总被引:1,自引:0,他引:1  
对00Cr12Ni9Mo4Cu2Ti马氏体时效不锈钢进行了离子渗氮处理,研究了不同渗氮条件下所形成的渗氮层的相结构与性能。结果表明:经离子渗氮后的00Cr12Ni9Mo4Cu2Ti马氏体时效不锈钢的表面硬度、耐磨性都有明显的提高,表面硬度最高达到了1350HV0.05。当样品在400℃渗氮时,表层新相主要由α相组成;当渗氮温度上升至500℃时,表层新相主要由αN相、γ′-Fe4N相、ε相组成,并有大量的CrN相形成;当渗氮温度高于600℃时,ε相、CrN的含量继续增加,γ′-Fe4N相逐渐减少,αN相几乎完全分解。伴随着CrN相的生成,样品的耐磨性得到了提高,表面耐腐蚀性能有一定下降。实验还观察到该马氏体时效不锈钢渗氮层中有微裂纹产生,裂纹的形成与样品的残余内应力和氮化物相生成有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号