首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AlxGa1−xN/GaN/AlN heterostructures on silicon (Si) substrate was developed by nitrogen plasma-assisted molecular beam epitaxy (MBE) and their properties were investigated by scanning electron microscopy (SEM), electron dispersive X-ray (EDX), atomic force microscopy (AFM), high resolution X-ray diffraction (XRD), Raman spectroscopy and Hall effect measurements. High purity gallium (7N) and aluminum (6N5) were used in the Knudsen cells. High purity nitrogen with 7N purity was supplied to radio frequency (RF) source to generate reactive nitrogen species. The nitrogen pressure and a discharge power were kept at 1.5×10−5 Torr and 300 W, respectively. From SEM measurements, the surface morphology of samples presented 2- and 3-dimensional growth modes. The EDX measurements showed that there were no foreign elements in the grown samples. The HR-XRD measurement has confirmed that the AlxGa1−xN/GaN/AlN heterostructures samples were epitaxially grown on Si substrate. All the dominant E2 phonon modes were found in Raman spectra results. Lastly, AlxGa1−xN/GaN/AlN heterostructures based metal–semiconductor–metal (MSM) UV photodetectors were fabricated and the electrical characteristics of the devices were investigated by using current–voltage (I–V) and photo-conductivity measurements. The devices presented good I–V and photoconductivity characteristics.  相似文献   

2.
Spontaneous and piezoelectric polarization in hexagonal GaN/AlGaN heterostructures give rise to large built-in electric fields. The effect of the builtin electric field in GaN/AlxGa1−xN quantum wells was investigated for x=0.2 to 0.8 by photoluminescence studies. The quantum well structures were grown by molecular beam epitaxy on (0001) sapphire substrates. Cross-sectional transmission electron microscopy performed on the samples revealed abrupt interfaces and uniform layer thicknesses. The low temperature (4 K) photoluminescence peaks were progressively red-shifted due to the quantum confined Stark effect depending on the AlN mole fraction in the barriers and the thickness of the GaN quantum well. Our results verify the existence of very large built-in electric fields of up to 5 MV/cm in GaN/Al0.8Ga0.2N quantum wells.  相似文献   

3.
We have investigated near-infrared absorption and photocurrent in lattice-matched AlInN/GaN and strained AlGaN/GaN heterostructures grown by molecular-beam epitaxy (MBE) on low-defect GaN substrates for infrared device applications. The AlGaN/GaN heterostructures were grown under Ga-rich conditions at 745°C. Material characterization via atomic force microscopy and high-resolution x-ray diffraction indicates that the AlGaN/GaN heterostructures have smooth and well-defined interfaces. A minimum full-width at half-maximum of 92 meV was obtained for the width of the intersubband absorption peak at 675 meV of a 13.7 Å GaN/27.5 Å Al0.47Ga0.53N superlattice. The variation of the intersubband absorption energy across a 1 cm × 1 cm wafer was ±1%. An AlGaN/GaN-based electromodulated absorption device and a quantum well infrared detector were also fabricated. Using electromodulated absorption spectroscopy, the full-width at half-maximum of the absorption peak was reduced by 33% compared with the direct absorption measurement. This demonstrates the suitability of the electromodulated absorption technique for determining the intrinsic width of intersubband transitions. The detector displayed a peak responsivity of 195 μA/W at 614 meV (2.02 μm) without bias. Optimal MBE growth conditions for lattice-matched AlInN on low-defect GaN substrates were also studied as a function of total metal flux and growth temperature. A maximum growth rate of 3.8 nm/min was achieved while maintaining a high level of material quality. Intersubband absorption in AlInN/GaN superlattices was observed at 430 meV with full-width at half-maximum of 142 meV. Theoretical calculations of the intersubband absorption energies were found to be in agreement with the experimental results for both AlGaN/GaN and AlInN/GaN heterostructures.  相似文献   

4.
Mg- and Si-doped GaN and AlGaN films were grown by metalorganic chemical vapor deposition and characterized by room-temperature photoluminescence and Hall-effect measurements. We show that the p-type carrier concentration resulting from Mg incorporation in GaN:Mg films exhibits a nonlinear dependence both on growth temperature and growth pressure. For GaN and AlGaN, n-type doping due to Si incorporation was found to be a linear function of the silane molar flow. Mg-doped GaN layers with 300K hole concentrations p ∼2×1018 cm−3 and Si-doped GaN films with electron concentrations n∼1×1019 cm−3 have been grown. N-type Al0.10Ga0.90N:Si films with resistivities as low as p ∼6.6×10−3 Ω-cm have been measured.  相似文献   

5.
Polarization-engineered Ga-face GaN-based heterostructures with a GaN cap layer and an AlGaN/p-GaN back barrier have been designed for normally-off field-effect transistors (FETs). The simulation results show that an unintentionally doped GaN cap and p-GaN layer in the buffer primarily deplete electrons in the channel and the Al0.2Ga0.8N back barrier helps to pinch off the channel. Experimentally, we have demonstrated a normally-off GaN-based field-effect transistor on the designed GaN cap/Al0.3Ga0.7N/GaN channel/Al0.2Ga0.8N/p-GaN/GaN heterostructure. A positive threshold voltage of 0.2 V and maximum transconductance of 2.6 mS/mm were achieved for 80-μm-long gate devices. The device fabrication process does not require a dry etching process for gate recessing, while highly selective etching of the GaN cap against a very thin Al0.3GaN0.7N top barrier has to be performed to create a two-dimensional electron gas for both the ohmic and access regions. A self-aligned, selective etch of the GaN cap in the access region is introduced, using the gate metal as an etch mask. The absence of gate recess etching is promising for uniform and repeatable threshold voltage control in normally-off AlGaN/GaN heterostructure FETs for power switching applications.  相似文献   

6.
We describe the low resistance of tunnel junction structures with a p +-AlGaAs layer grown on an InP substrate using the autodoping technique. An Al0.4Ga0.6As layer showed a hole concentration of 2.4 × 1020 cm?3 without additional material sources. We demonstrated that the proposed tunnel junction structure with a p +-Al0.4Ga0.6As/In0.52Al0.48As multiple-quantum-well layer on an InP substrate exhibited a low resistance of 2.5 × 10?5 Ω cm2, as estimated from reverse current–voltage characteristics, and a tunnel peak current density of 170 A/cm2.  相似文献   

7.
We report on the growth of Al0.25Ga0.75N/GaN heterostructures grown on low dislocation density vicinal surfaces of semi-insulating c-axis GaN substrates. Atomic force microscopy (AFM), photoluminescence (PL), cathodoluminescence (CL), high-resolution x-ray diffraction (HRXRD), secondary-ion mass spectroscopy (SIMS), Hall effect, and Raman spectroscopy have been used to assess structural and electrical properties as a function of substrate offcut. Bulk GaN substrates with vicinal offcut between 0.5° and 1.4° are optimal with respect to surface roughness and dopant incorporation. AFM, PL, and CL show decreasing Mg incorporation with increasing offcut angle. Raman spectroscopy, used to analyze biaxial strain, confirms essentially strain-free heterostructure growth on vicinal substrates with offcut angles between 0.5° and 1.4° off [0001] toward [1[`1] 00] [1\overline{1} 00] . Aluminum (Al) incorporation in the Al x Ga1−x N barrier assessed by Raman vibration is in excellent agreement with trends found by HRXRD.  相似文献   

8.
We have investigated systematically the effects of growth parameters upon the unintentional incorporation of B, As, and O impurities in GaN grown by molecular beam epitaxy with an RF-plasma activated nitrogen source. The prepared samples were analyzed using secondary ion mass spectrometry to determine the absolute concentration of the impurities. The boron background concentration in the unintentionally doped GaN was found to strongly correlate with the nitrogen plasma power used during the growth, indicating a decomposition of the pBN crucible in the plasma source. Due to previous GaAs growth in the same chamber, a considerably large amount of As contamination (≈3×1018 at/cm3) was also observed in the grown layer. The presence of Al in GaN is found to facilitate the incorporation of oxygen impurities in the layer. We determined an empirical formula, Co t/Co b 3.8×(CAl/CAl)0.27, representing the correlation between O concentration and Al mole fraction (%) in the small range of Al content, 0.03≈1%, in the layer. The residual oxygen level was substantially reduced from 3.4×1019 to mid-1018 at/cm3 in the GaN layer when the buffer layer structure was changed from low temperature grown GaN single buffer to GaN/AlN double buffer layer. We ascribe this significantly lowered oxygen impurity level to improved crystalline quality of the layer due to the double buffer layer structure.  相似文献   

9.
We have grown highly strained In0.35Ga0.65As layers on GaAs substrates by molecular beam epitaxy to improve the performance of high hole mobility transistors (HHMTs). The mobility and sheet hole concentration of double side doped pseudomorphic HHMT structures at room temperature reached 314 cm2/V-s and 1.19 × 1012 cm−2, respectively. Photoluminescence measurements at room temperature show good crystalline quality of the In0.35Ga0.65As layers. This study suggests that the performance of HHMTs can be improved by using high-quality In0.35Ga0.65As layers for the channel of double side doped heterostructures pseudomorphically grown on GaAs substrates.  相似文献   

10.
The 320 × 256 focal plane arrays based on р + -B–n-N + tetralayer heterostructures with a wide-gap barrier layer have been investigated. The heterostructures with a narrow-gap n-InGaAs absorbing layer were grown by means of metalorganic vapor phase epitaxy on InP substrates. The band discontinuity between the In0.53Ga0.47As absorbing layer and the In0.52Al0.48As barrier layer is removed by growing a thin four-component n-AlInGaAs layer with the bandgap gradient variation. Delta-doped layers included into the heterostructures make it possible to lower the barrier in the valence band and eliminate the nonmonotonicity of energy levels. The experimental study of the dark current has been performed. It has been revealed that the average value of the dark current does not exceed 10 fA for the photodiode arrays with a pitch of 30 μm.  相似文献   

11.
High-quality AIGaAs epilayers have been grown by low pressure organometallic vapor phase epitaxy with a new aluminum precursor tritertiarybutylaluminum (TTBAl). Layers grown at 650°C have a featureless mirror surface morphology and strong room temperature photoluminescence. Carbon was not detectable in chemical analysis by secondary ion mass spectroscopy, nor in low temperature (4K) photoluminescence spectra. Oxygen concentration in Al0.25Ga0.75As is as low as ∼2−3 × 1017 cm−3. Nominally undoped AIGaAs layers exhibit n-type conductiv-ity with electron concentrations at ∼ 1−1.5 × 1016 cm−3. A high degree of compo-sitional uniformity over 5 cm diam substrates (0.268 ±0.001) was obtained. These results indicate the potential for TTBA1 as an aluminum precursor for low temperature growth of Al-containing III-V alloys.  相似文献   

12.
MOCVD-grown heterostructures with one or several InxGa1?x N layers in a GaN matrix have been studied by transmission electron microscopy. In heterostructures with thick InGaN layers, a noncoherent system of domains with lateral dimensions (~50 nm) on the order of the layer thickness (~40 nm) is formed. In the case of ultrathin InGaN inclusions, nanodomains coherent with the GaN matrix are formed. The content of indium in nanodomains, determined by the DALI method, is as high as x≈0.6 or more, substantially exceeding the average In concentration. The density of the nanodomains formed in the structures studied is n≈(2–5)×1011 cm?2. In the structures with ultrathin InGaN inclusions, two characteristic nanodomain sizes are observed (3–6 and 8–15 nm).  相似文献   

13.
Thin films of Si-doped AlxGa1−xN (0.03≤x≤0.58) having smooth surfaces and strong near-band edge cathodoluminescence were deposited at 0.35–0.5 μm/h on on-axis 6H-SiC(0001) substrates at 1100°C using a 0.1 μm AlN buffer layer for electrical isolation. Alloy films having the compositions of Al0.08Ga0.92N and Al0.48Ga0.52N exhibited mobilities of 110 and 14 cm2/V·s at carrier concentrations of 9.6×1018 and 5.0×1017 cm−3, respectively. This marked change was due primarily to charge scattering as a result of the increasing Al concentration in these random alloys. Comparably doped GaN films grown under similar conditions had mobilities between 170 and ∼350 cm2/V·s. Acceptor doping of AlxGa1−xN for x≤0.13 was achieved for films deposited at 1100°C. No correlation between the O concentration and p-type electrical behavior was observed.  相似文献   

14.
High quality Si-doped n-Al0.6Ga0.4N thin films were grown on sapphire substrates by molecular beam epitaxy (MBE) by interrupted deposition and subsequent in-situ thermal annealing (IDTA). High-resolution X-ray diffraction, scanning electron microscope, atomic force microscope, photoluminescence and Hall-effect measurements were carried out to characterize the structural, electrical and optical properties. The results showed that the full width at half-maximum of the Si-doped Al0.6Ga0.4N (0002) was as low as 160 arcsec. The threading dislocation density decreases two orders of magnitude to 6×1107 cm−2 by using the IDTA technology. The carrier density and mobility reached at 1.1×1019 cm−3 and 4.8 cm2/V s, respectively. Si still acted as a shallow donor even for the heavily doped Al0.6Ga0.4N.  相似文献   

15.
The diffusion of zinc into GaAs, Al0.3Ga0.7As and Al0.3Ga0.7As/GaAs single heterostructures have been studied. The depth of the diffusion front is found to be proportional to the square root of the diffusion time, [t]1/2, and for single heterostructures the Al0.3Ga0.7As layer thickness,d 1 modifies this relationship through decreasing the junction depth byd 1 multiplied by a constant. It is shown that this relationship can be used for predicting diffusion fronts in double heterostructures.  相似文献   

16.
We have studied the evolution of threading dislocations (TDs), stress, and cracking of GaN films grown on (111) Si substrates using a variety of buffer layers including thin AlN, compositionally graded Al x Ga1-x N (0 ≤ x ≤ 1), and AlN/Al y Ga1-y N/Al x Ga1-x N (0 ≤ x ≤ 1, y = 0 and 0.25) multilayer buffers. We find a reduction in TD density in GaN films grown on graded Al x Ga1-x N buffer layers, in comparison with those grown directly on a thin AlN buffer layer. Threading dislocation bending and annihilation occurs in the region in the graded Al x Ga1-x N grown under a compressive stress, which leads to a decrease of TD density in the overgrown GaN films. In addition, growing a thin AlN/Al y Ga1-y N bilayer prior to growing the compositionally graded Al x Ga1-x N buffer layer significantly reduces the initial TD density in the Al x Ga1-x N buffer layer, which subsequently further reduces the TD density in the overgrown GaN film. In-situ stress measurements reveal a delayed compressive-to-tensile stress transition for GaN films grown on graded Al x Ga1-x N buffer layers or multilayer buffers, in comparison to the film grown on a thin AlN buffer layer, which subsequently reduces the crack densities in the films.  相似文献   

17.
We report results from Hall effect studies on Al x Ga1?x As (x = 0.23–0.24) with bandgap energies of 1.76 ± 0.01 eV grown by liquid-phase epitaxy (LPE). Room-temperature Hall measurements on unintentionally doped AlGaAs revealed p-type background doping for concentrations in the range 3.7–5.2 × 1016 cm?3. Sn, Te, Ge, and Zn-doped AlGaAs were also characterized to study the relationship between doping concentrations and the atomic fractions of the dopants in the melt. Temperature-dependent Hall measurements were performed to determine the activation energies of the four dopants. Deep donor levels (DX centers) were dominant for Sn-doped Al0.24Ga0.76As, but not for Te-doped Al0.24Ga0.76As. Comparison of the temperature-dependent Hall effect results for unintentionally and intentionally doped Al0.24Ga0.76As indicated that the impurity contributing to the p-type background doping had the same activation energy as Mg. We thus suggest a Te-doped emitter and an undoped or Ge-doped base to maximize the efficiency of Al x Ga1?x As (x ~ 0.23) solar cells grown by LPE.  相似文献   

18.
We investigate the effects of spacer layer thickness on the optical and transport properties of the n-typeδ-doped pseudomorphic Al0.30Ga0.70As/In0.15Ga0.85As / GaAs structures. Aδ-doped AlGaAs/InGaAs/GaAs structure with a 6nm spacer layer yields a sheet carrier concentration of 1.5×1012 cm?2 at 77K with electron mobility of 6.4×103 cm2/Vs, 3.11×104 cm2/Vs, and 3.45×104 cm2/Vs at room temperature, 77 and 20K, respectively. The effects of the different scattering mechanisms on luminescence linewidth and electron mobility have also been discussed.  相似文献   

19.
The complex high-frequency conductivity of GaAs/Al0.3Ga0.7As heterostructures that are δ-doped and modulation-doped with silicon was investigated by acoustic methods under conditions of the integer quantum Hall effect. Both the real (σ1) and imaginary (σ2) parts of the complex conductivity σ(ω, H)=σi?iσ2 were determined from the dependences of the absorption and velocity of surface acoustic waves on magnetic field. It is shown that, in the heterostructures with electron density ns=(1.3–7)×1011 cm?2 and mobility μ=(1–2)×105 cm2/(V s), the high-frequency conductivity near the centers of the Hall plateau is due to electron hopping between localized states. It is established that, with filling numbers 2 and 4, the conductivity of the Al0.3Ga0.7As:Si layer efficiently shunts the high-frequency hopping conductivity of the two-dimensional interface layer. A method of separating the contributions of the interface and Al0.3Ga0.7As:Si layers to the hopping conductivity σ(ω, H) is developed. The localization length of electrons in the interface layer is determined on the basis of the nearest neighbor hopping model. It is shown that, near the centers of the Hall plateau, both σ(ω, H) and ns depend on the cooling rate of a GaAs/Al0.3Ga0.7As sample. As a result, the sample “remembers” the cooling conditions. Infrared light and static strain also change both σ(ω, H) and ns. We attribute this behavior to the presence of two-electron defects (so-called DX? centers) in the Al0.3Ga0.7As:Si layer.  相似文献   

20.
Electrical and optical activation studies of lower dose Si-implanted AlxGa1?xN (x=0.14 and 0.24) have been made systematically as a function of ion dose and anneal temperature. Silicon ions were implanted at 200 keV with doses ranging from 1×1013 cm?2 to 1×1014 cm?2 at room temperature. The samples were proximity cap annealed from 1,100°C to 1,350°C with a 500-Å-thick AlN cap in a nitrogen environment. Nearly 100% electrical activation efficiency was obtained for Al0.24Ga0.76N implanted with a dose of 1 × 1014 cm?2 after annealing at an optimum temperature around 1,300°C, whereas for lower dose (≤5×1013 cm?2) implanted Al0.24Ga0.76N samples, the electrical activation efficiencies continue to increase with anneal temperature up through 1,350°C. Seventy-six percent electrical activation efficiency was obtained for Al0.14Ga0.86N implanted with a dose of 1 × 1014 cm?2 at an optimum anneal temperature of around 1,250°C. The highest mobilities obtained were 89 cm2/Vs and 76 cm2/Vs for the Al0.14Ga0.86N and Al0.24Ga0.76N, respectively. Consistent with the electrical results, the photoluminescence (PL) intensity of the donor-bound exciton peak increases as the anneal temperature increases from 1,100°C to 1,250°C, indicating an increased implantation damage recovery with anneal temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号