首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 475 毫秒
1.
针对高温环境下压力测量需求,提出采用蓝宝石材料来构造适用于特殊环境下的光纤高温法珀压力传感器。基于圆形膜片压力敏感原理设计了传感器敏感单元结构尺寸,通过Comsol有限元软件建立了敏感单元模型,对敏感膜片的表面位移及应力分布情况进行了仿真,验证了传感器设计的可靠性;同时分析了传感器的温敏效应,结果表明随温度升高,传感器的灵敏度会增大,会对压力测量产生误差,约为1.51kPa/℃,上述结果为蓝宝石高温压力传感器的结构和性能优化设计提供了有效指导。  相似文献   

2.
台面结构硅基法珀型光纤MEMS压力传感器的研究   总被引:1,自引:0,他引:1  
提出了一种新的光纤压力传感器的设计,该传感器敏感膜采用了台面结构而非传统的平面结构.用法布里-珀罗(Fabry-Perot)干涉理论阐述了传感器的工作原理,提出了敏感膜的力学模型.基于Fabry-Perot干涉理论推导出光纤MEMS压力传感器中台面敏感膜受到的压力与干涉光强的关系表达式,通过ANSYS有限元软件分析了台面膜型的力学性能,结果表明台面敏感膜在平行度上优于平面膜.通过数值模拟分析了传感器的关键参数对其性能的影响,为光纤MEMS压力传感器的加工和制作提供了理论依据.  相似文献   

3.
张鹏 《传感技术学报》2021,34(5):609-614
为了提高短法珀腔干涉式微压传感器峰值解调法的精度,本文研究了基于法珀干涉的石墨烯光纤微压传感器的解调方法.利用FDTD Solutions光学仿真软件仿真模拟传感器的反射光谱,搭建了传感器测试系统.采用Savitzky-Golay卷积平滑滤波和洛伦兹局部拟合相结合的峰值解调法,并利用多峰解调法解调出腔长,分析压力和腔长的关系.实验结果表明:采用Savitzky-Golay卷积平滑滤波明显滤除噪声信号,洛伦兹拟合寻找波谷的精度优于高斯拟合寻找波谷的精度,在0~0.1 MPa范围,传感器灵敏度为73.766 nm/kPa.  相似文献   

4.
分析了多个反射面对单法—珀腔传感器光谱法解调的影响。为降低不参与形成法—珀腔的反射面的反射率以消除这一影响,利用Nd∶YAG激光加工系统在两面抛光硅片中的一面进行了表面纹理化处理。将经激光切割下的已表面纹理化的圆形硅片粘贴在中空玻璃毛细管一端,最后插入单模光纤并封装成非本征(EFPI)光纤法—珀干涉型压力传感器。进行了静态气压测试实验,结果表明:在40~240kPa气压范围内,传感器压力灵敏度为11.9 nm/kPa,线性度为1.51%。  相似文献   

5.
解调技术是决定光纤光栅传感解调系统速率、精度、容量等性能的关键因素。提出一种基于线阵光电探测器成像原理的光纤光栅传感器解调方案,通过多级衍射,结合弱曝光自适应超频技术和FPGA并行数据处理技术,实现了对传感信号的快速解调,同时可以实现对级联型光纤光栅传感器和长周期光纤光栅传感器信号的解调。使用温度、应力敏感光纤光栅传感器对搭建的铁路桥模型进行监测,实验结果表明,光纤光栅传感系统的解调精度可以达到10 pm量级,系统可测量光谱范围达50 nm,提高了传感系统的解调速率和精度,同时实现了光纤光栅解调设备的微型化。  相似文献   

6.
基于线阵图像传感器的光纤光栅传感解调技术   总被引:1,自引:1,他引:1       下载免费PDF全文
对比线阵CCD,CMOS图像传感器和InGaAs图像传感器的原理、特点和性能,提出了基于InGaAs图像传感器的光纤光栅传感解调技术,并设计了基于线阵InGaAs图像传感器的光纤光栅传感解调系统,而且通过计算机控制单独对应力和温度变化进行了测量实验,得到了理想的结果.基于线阵InGaAs图像传感器的解调系统不但测量精度和分辨率很高,而且基本上实现了光纤光栅传感的智能化,为光纤光栅传感的工业化奠定了基础,具有很好的应用前景.  相似文献   

7.
采用微机电系统(MEMS)技术制造的传感器具有体积小、重量轻、成本低等特点。基于S i3N4压力敏感膜,利用MEMS技术,设计了一种用于测量气压的传感器。采用应变电阻原理对压力进行测量,进行了理论分析计算,设计了工艺过程,制作出了器件样片。这种压力传感器的显著优点是结构简单、工艺过程容易。并且,在50~100 kPa的压力条件下,对传感器进行了测试,其精度达到了0.5%。  相似文献   

8.
提出了一种新的压力传感器的设计,该传感器基于Fabry-Perot腔干涉和波长解调理论测量压力.设计用MEMS技术以及普通的光通讯接插件制作出工艺简单,分辨率高的光纤MEMS压力传感器.阐述了传感器的工作原理,分析了硅膜的厚度对传感器性能的影响以及FP腔的长度对反射光信号的影响.系统采用可调谐激光器进行信号访问,利用反射谱的相位变化完成信号解调.理论分析和模拟计算验证了传感器加工制作方案的可行性.  相似文献   

9.
设计了一种非本征型光纤法布里-珀罗(F-P)爆炸压力传感器,传感器采用膜片式结构,采用三波长法对F-P信号进行解调.压力加载试验表明,研制的F-P压力传感器线性度较好,具有较高的频响特性,在实际的爆炸测试中不受电磁干扰影响,可用于爆炸动压测量.  相似文献   

10.
设计了一种支撑式光纤法布里—珀罗(F-P)爆炸压力传感器,传感器采用支撑式结构,采用三波长法进行解调,量程50~500 MPa.压力加载试验表明:研制的F-P压力传感器线性度较好,回程误差小,具有较高的频响特性,在实际的爆炸测试中不受电磁干扰影响,可用于爆炸动压测量.  相似文献   

11.
单宁 《传感技术学报》2015,28(4):487-491
针对光纤F-P超声传感器工作点易偏离问题,设计了基于双波长稳定技术的低细度光纤F-P传感系统,建立了双波长光纤F-P传感系统的DE算法数学模型,优化设计了一高正交精度光纤F-P传感系统,建立基于该传感器的激光超声检测系统,实验研究了该传感器探测超声信号的有效性和方向灵敏度。结果表明,该传感器可以有效检测试样中激发出的超声表面波信号。激发源与传感器轴向夹角为0°时,表面波幅值最大。随着激发源与传感器轴向夹角增大,表面波幅值降低。激发源与传感器轴线垂直时,幅值下降达80%,说明该传感器有很强的方向性。  相似文献   

12.
金属半导体异质混合结构是一种特殊的压阻结构,其具有高于传统MEMS压阻式压力传感器的压阻性能.鉴于此,设计和研究了一种由掺杂单晶硅和金属铝混合形成的MEMS异质结构压力传感器.首先结合理论模型和ANSYS有限元模拟仿真分析了硅铝异质结构传感器的灵敏度特性,然后通过MEMS工艺制作了硅铝异质结构压力传感器芯片,并对其进行了封装与测试.实验结果表明,硅铝异质结构压力传感器的灵敏度可达到0.1168 mV/(V·kPa),而利用参考结构能够明显减小环境温度对其性能的影响.在此基础之上,本文采用基于遗传算法改进的小波神经网络对传感器的温度漂移和非线性误差进行了补偿,补偿后硅铝异质结构压力传感器的测量误差小于±1.5%FS.  相似文献   

13.
运用微机械系统加工技术制作了一种新型法布里-珀罗干涉型光纤微机电系统压力传感器,该传感器通过测量反射光谱的移动测量压力.运用多腔干涉原理对该传感器进行理论以及模拟分析得出,通过改变压力传感器的尺寸可较容易的调节压力线性测量范围和灵敏度.实验结果表明,在压力线性测量范围[0.1~1.0]MBa内,灵敏度可达到12.71 nm/MPa(光谱移动/压力).  相似文献   

14.
具有温度补偿的膜片型光纤光栅温度压力传感器   总被引:4,自引:0,他引:4  
阐述了具有温度补偿结构的膜片型光纤光栅温度压力传感器。传感器以弹性膜片为感压元件,在压力作用下产生轴向位移来压缩压力敏感光栅以实现压力传感;通过结构温度补偿消除压力敏感光栅的温度漂移,同时串入感温光栅进行实时修正并实现温度测量。对传感器的压力和温度特性进行了测量。试验结果表明:压力灵敏度为528 pm/MPa,温度灵敏度为8 pm/℃。  相似文献   

15.
The purpose of the paper is to design and fabricate a ZnO-based MEMS acoustic sensor for higher sound pressure level (SPL) measurement in the range of 120–200 dB and low frequency infrasonic wave detection. The thickness of silicon diaphragm was optimized for higher SPL using MEMS-CAD-Tool COVENTORWARE. The microtunnel which relates the cavity to the atmosphere was designed and simulated analytically for low cut-off frequency of the sensor in infrasonic band. The resonance frequency of the sensor was obtained using modal analysis. The sensitivity of the sensor was also estimated using COVENTORWARE. The optimized Si-diaphragm thickness for the intended SPL range was determined and found to be 50 μm. The lower cut-off frequency of the sensor for a 10 μm-deep microtunnel was found to be 0.094 Hz. The resonance frequency of the sensor was obtained using modal analysis and found to be 78.9 kHz. Based on simulation results, the MEMS acoustic sensor with 10 μm-deep microtunnel was fabricated. The optimum sensitivity of sensor was calculated using simulated results and found to be 116.4 μVolt/Pa. The lower cut-off frequency of the sensor can be utilized to detect low frequency sounds. The high SPL sensing capability of the device up to 200 dB facilitates detection of high sound pressure level in launch vehicles, rocket motors and weapons’ discharge applications.  相似文献   

16.
A novel CMOS integrated Micro-Electro-Mechanical capacitive pressure sensor in SiGe MEMS (Silicon Germanium Micro-Electro-Mechanical System) process is designed and analyzed. Excellent mechanical stress–strain behavior of Polycrystalline Silicon Germanium (Poly-SiGe) is utilized effectively in this MEMS design to characterize the structure of the pressure sensor diaphragm element. The edge clamped elliptic structured diaphragm uses semi-major axis clamp springs to yield high sensitivity, wide dynamic range and good linearity. Integrated on-chip signal conditioning circuit in 0.18 μm TSMC CMOS process (forming the host substrate base for the SiGe MEMS) is also implemented to achieve a high overall gain of 102 dB for the MEMS sensor. A high sensitivity of 0.17 mV/hPa (@1.4 V supply), with a non linearity of around 1 % is achieved for the full scale range of applied pressure load. The diaphragm with a wide dynamic range of 100–1,000 hPa stacked on top of the CMOS circuitry, effectively reduces the combined sensor and conditioning implementation area of the intelligent sensor chip.  相似文献   

17.
E型碳化硅压力传感器的优化设计   总被引:3,自引:0,他引:3  
描述了一种性能优越的SiC压力传感器的理论和仿真运用基于小扰度的解析模型计算出了这种传感器的应变分布.根据应变分布规律优化设计了传感器的力敏电阻.利用ANSYS软件分析了该传感器的一些重要特性.与传统的传感器(圆膜传感器)相比,量程为500 kPa的该传感器表现出优异的灵敏度(24.8 μV/V.kPa)和非线性度小于0.08%.仿真结果与测量结果基本一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号