首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Background: Oral-sustained release gel formulations with suitable rheological properties have been proposed as a means of improving the compliance of dysphagic and geriatric patients who have difficulties with handling and swallowing oral dosage forms. Aim: We have modified the rheological and release properties of thermally reversible methylcellulose solutions by admixture with pectin, the gelation of which is ion-responsive, with the aim of formulating an in situ gelling vehicle suitable for oral-sustained drug delivery. Method: Gels formed by solutions containing methylcellulose (1.0–2.0%) and pectin (0.5–2.0%) were assessed for suitable gel strength, and in vitro and in vivo release of paracetamol. Results: Addition of 1.5% pectin to a 2.0% methylcellulose formulation containing 20% d-sorbitol and calcium ions in complexed form increased the gel strength and provided a formulation with a suitable viscosity for ease of swallowing by dysphagic patients. Gels formed in situ after oral administration of this formulation retained their integrity in the rat stomach for sufficient time for sustained release to be achieved. In vitro release of paracetamol from methylcellulose, pectin, and methylcellulose/pectin gels was diffusion-controlled. Plasma levels of paracetamol after oral administration to rats (gastric pH 2.6 and 5.5) of a solution including 2.0% methylcellulose/1.5% pectin showed improved sustained release compared with that from both 2.0% methylcellulose and 1.5% pectin solutions. Conclusions: The addition of suitable concentrations of pectin to methylcellulose solutions produces in situ gelling formulations with suitable viscosity for administration to dysphagic patients and improved sustained release characteristics.  相似文献   

2.
Background: Elderly patients with swallowing dysfunction may benefit from the oral administration of liquid dosage forms with in situ gelling properties.

Aim: We have designed in situ gelling liquid dosage formulations composed of mixtures of methylcellulose, which has thermally reversible gelation properties and sodium alginate, the gelation of which is ion-responsive, with suitable rheological characteristics for ease of administration to dysphagic patients and suitable integrity in the stomach to achieve a sustained release of drug.

Method: The rheological and gelation characteristics of solutions containing methylcellulose (2.0%) and sodium alginate (0.25–1.0%) were assessed for their suitability for administration to dysphagic patients. The gel strength and in vitro and in vivo release characteristics of gels formed by selected formulations were compared using paracetamol as a model drug.

Results: Mixtures of 2.0% methylcellulose and 0.5% alginate containing 20% d-sorbitol were of suitable viscosity for ease of swallowing by dysphagic patients and formed gels at temperatures between ambient and body temperature allowing administration in liquid form and in situ gelation in the stomach. In vitro release of paracetamol from 2.0% methylcellulose/0.5% alginate gels was diffusion-controlled at pH 1.2 and 6.8. Measurement of plasma levels of paracetamol after oral administration to rats of a 2.0% methylcellulose/0.5% alginate formulation showed improved sustained release compared to that from 2.0% methylcellulose and 0.5% alginate solutions and from an aqueous solution of paracetamol.

Conclusions: Solutions of mixtures of methylcellulose and alginate in appropriate proportions are of suitable consistency for administration to dysphagic patients and form gels in situ with sustained release characteristics.  相似文献   

3.
The purpose of this study was to evaluate the potential of a xyloglucan formulation with in situ gelling properties for the oral sustained delivery of paracetamol. Gelation of dilute aqueous solutions of the polysaccharide xyloglucan occurred in rabbit and rat stomachs as the orally administered chilled solutions attained body temperature. In vitro studies demonstrated diffusion-controlled release of paracetamol from the gels over a period of 6 hr. The bioavailabilities of paracetamol from the xyloglucan gels formed in situ in the stomachs of rabbits after oral administration of the liquid formulations were similar to that of a commercially available suspension containing an identical dose of paracetamol.  相似文献   

4.
Background: Vaginal cavity represents a good site for drug administration and delivery. Aim: The aim of this work was the design of new mucoadhesive semisolid dosage forms for vaginal delivery of benzydamine. Method: Simple gels, obtained by using sodium carboxymethylcellulose (NaCMC) and hydroxyethylcellulose (HEC), were employed as water phase of an oil-in-water emulsion (O/W cream) to obtain emulgels, more stable and manageable than gels. Successively, in order to modify the emulgel consistency, the ingredient cetostearylic alcohol was replaced by the same amount of gel or vaseline. All the preparations were submitted to mucoadhesion and rheological, extrusion, and release studies and compared to market vaginal cream Tantum Rosa®. Results: HEC formulations showed good drug release profiles and good rheological behavior but low mucoadhesion strength, whereas NaCMC (4%?gel) formulations had better drug release and very high mucoadhesive strength. However, the presence of NaCMC 4%?conferred too much viscosity to the preparation. Taking into consideration all performances, the most suitable formulations for vaginal applications resulted in those containing NaCMC (3%?gel) and with gel replacing cetostearylic alcohol as they showed good ex vivo performances in terms of manageability and high bioadhesion to vaginal mucosa.  相似文献   

5.
Acetaminophen (paracetamol) is available in a wide range of oral formulations designed to meet the needs of the population across the age-spectrum, but for people with impaired swallowing, i.e. dysphagia, both solid and liquid medications can be difficult to swallow without modification. The effect of a commercial polysaccharide thickener, designed to be added to fluids to promote safe swallowing by dysphagic patients, on rheology and acetaminophen dissolution was tested using crushed immediate-release tablets in water, effervescent tablets in water, elixir and suspension. The inclusion of the thickener, comprised of xanthan gum and maltodextrin, had a considerable impact on dissolution; acetaminophen release from modified medications reached 12–50% in 30?min, which did not reflect the pharmacopeia specification for immediate release preparations. Flow curves reflect the high zero-shear viscosity and the apparent yield stress of the thickened products. The weak gel nature, in combination with high G' values compared to G'' (viscoelasticity) and high apparent yield stress, impact drug release. The restriction on drug release from these formulations is not influenced by the theoretical state of the drug (dissolved or dispersed), and the approach typically used in clinical practice (mixing crushed tablets into pre-prepared thickened fluid) cannot be improved by altering the order of incorporation or mixing method.  相似文献   

6.
Abstract

Gel-formulations containing a nonsteroidal anti-inflammatory drug, tolmetin, were prepared using three different carbomers namely, Carbopol? 934, 940 and 941. Effects of cosolvent composition, carbomer type, carbomer concentration and drug concentration on drug release from the gels were analyzed by factorial design. Gels with high aqueous content yielded significantly higher tolmetin release rates than gels with lower aqueous content. Although no significant differences in drug release characteristics were observed between the three carbomer gels, there was a trend in the release profiles; fastest drug release was observed from Carbopol? 941 gels and the slowest drug release was observed from Carbopol? 940 gels. Increasing the carbomer concentration from 1% w/w to 2% w/w had no significant effect on drug release from gel formulations prepared with all the three different types of carbomers. However, increasing the tolmetin concentration in the gels from 1% w/w to 4% w/w resulted in a dramatic increase in drug release. An investigation of the mechanism of drug release from the gels revealed that tolmetin release was diffusion controlled, except at the outset.  相似文献   

7.
Context: Alternative strategies are being employed to develop liquid oral sustained release formulation. These included ion exchange resin, sustained release suspensions and in situ gelling systems. The later mainly utilizes alginate solutions that form gels upon contact with calcium which may be administered separately or included in the alginate solution as citrate complex. This complex liberates calcium in the stomach with subsequent gellation. The formed gel can break after gastric emptying leading to dose dumping.

Objective: Development of modified in situ gelling system which sustain dextromethorphan release in the stomach and intestine.

Methods: Solutions containing alginate with calcium chloride and sodium citrate were initially prepared to select the formulation sustaining the release in the stomach. The best formulation was combined with chitosan. All formulations were characterized with respect to flow, gelling capacity, gelling strength and drug release.

Results: Increasing the concentration of alginate increased the gelling capacity and strength and reduced the rate of drug release in gastric conditions with 2% w/v alginate being the best formulation. However, these formulations failed to sustain the release in the intestinal conditions. Incorporation of chitosan with alginate increased the gelling capacity and strength and reduced the rate of drug release compared to alginate only system. The effect was optimum in formulation containing 1.5% w/v chitosan. The sustained release pattern was maintained both in the gastric and intestinal conditions and was comparable to that obtained from the marketed product.

Conclusion: Alginate-chitosan based in situ gelling system is promising for developing liquid oral sustained release.  相似文献   

8.
Periodontal disease is a chronic inflammation of gum and tissues that surround and support the teeth. Nonsteroidal anti-inflammatory drugs (NSAIDs) can be used in the treatment of periodontitis to ease swelling and inflammation. One approach of treating periodontitis is loading the NSAIDs in local drug delivery systems. Therefore, the objective of this study was to investigate the local delivery of the NSAIDs model drug ibuprofen to treat periodontitis using different types of gel formulations (hydrogel, oleogel, and bigel). Gel formulations were characterized in terms of their rheological properties (flow behavior, viscoelastic, and bioadhesive properties) using a controlled-stress rheometer. The in vitro drug release of ibuprofen from gel formulations was investigated using Franz diffusion cells. Gels exhibited more solid-like (elastic) behavior. The viscosity and viscoelastic properties were in the order of oleogel?>?bigel?>?hydrogel, respectively. In bioadhesion study, mucin dispersion/plain ibuprofen-hydrogel mixture showed a frequency-dependent interaction of ΔG’?=??31 and ΔG’?=?+?53?Pa at 1 and 10?rad/s, respectively. A strong positive interaction (ΔG’?=?+?6000 and +130,667?Pa at 1 and 10?rad/s, respectively) was found in mucin dispersion/plain ibuprofen–oleogel mixture. The extent of the negative interaction increased in mucin dispersion/plain ibuprofen-bigel mixture (ΔG’?=??59,000 and ?79,375?Pa at 1 and 10?rad/s, respectively). After 6?h, ibuprofen release from hydrogel, oleogel, and bigel was 59.5?±?2.2, 80.6?±?3.9, and 94.6?±?3.2%, respectively. Results showed that the rheological and bioadhesive properties and in vitro drug release were influenced by the type of gel formulations.  相似文献   

9.
ABSTRACT

The aim of this study was to evaluate the potential of an in situ gelling pectin formulation as a vehicle for the oral sustained delivery of theophylline and cimetidine. In vitro studies demonstrated diffusion-controlled release of theophylline from 1, 1.5, and 2% w/v pectin gels. Release of this drug from 1.5% w/v pectin gels formed in situ in rabbit stomach was sustained over a period of 12 hours giving a theophylline bioavailability some seven fold higher than when administered from a commercial syrup. In contrast, interactions between cimetidine and pectin led to weak gelation of the pectin sols that prevented any meaningful determination of in vitro release characteristics. Similarly, in vivo release profiles from pectin formulations containing cimetidine were similar to that from a solution of this drug in buffer, indicative of weak gelation. Examination of the content of the rabbit stomach 5 hours after administration of 1.5% w/v pectin sols containing drug confirmed gel formation, but gels containing cimetidine were noticeably softer than those containing theophylline.  相似文献   

10.
The aim of this study was to evaluate the potential of preactivated thiolated pectin (Pec-Cys-MNA) for buccal drug delivery. Therefore, a gel formulation containing this novel polymer and the model drug lidocaine was prepared and investigated in vitro in terms of rheology, mucoadhesion, swelling behavior and drug release in comparison to formulations based on pectin (Pec) and thiolated pectin (Pec-Cys). Both pectin derivatives showed gel formation without addition of any other excipient due to self-crosslinking thiol groups. Under same conditions, pectin did not show gel formation. Viscosity of Pec-Cys-based formulation increased 92-fold and viscosity of Pec-Cys-MNA-based formulations by 4958-fold compared to pectin-based formulation. Gels did not dissolve in aqueous environment during several hours and were able to take up water. Mucoadhesion of pectin on buccal tissue could be improved significantly, value of total work of adhesion increased in the following rank order: Pec-Cys-MNA?>?Pec-Cys?>?Pec. The retention time of a model drug incorporated in gel formulations on buccal mucosa under continuous rinsing with phosphate-buffered saline was prolonged, after 1.5?h 3-fold higher amount of a model drug was to be found on tissue after application of Pec-Cys-MNA-based formulation compared to pectin-based and 2-fold compared to Pec-Cys-based formulation. The Pec-Cys-MNA-based gel showed a more sustained release of lidocaine than Pec-Cys-based gel, whereas pectin solution revealed an immediate release. According to these results, the self-crosslinking pectin-derivative is a promising tool for buccal application.  相似文献   

11.
The purpose of this study was to evaluate the potential of a pectin formulation with in situ gelling properties for the oral sustained delivery of paracetamol (acetaminophen). The formulations consisted of dilute aqueous solutions (1% to 2% w/v) of low methoxy pectin containing calcium ions in complexed form, which on release in the acidic environment of the stomach caused gelation of the pectin. In vitro studies demonstrated diffusion‐controlled release of paracetamol from the gels over a period of 6 h. A bioavailability of approximately 96% of that of a paracetamol solution could be achieved from gels containing an identical dose of drug formed in situ in the stomachs of rats, with appreciably lower peak plasma levels and a sustained release of drug over a period of at least 6 h.  相似文献   

12.
The purpose of this study was to evaluate the potential of a pectin formulation with in situ gelling properties for the oral sustained delivery of paracetamol (acetaminophen). The formulations consisted of dilute aqueous solutions (1% to 2% w/v) of low methoxy pectin containing calcium ions in complexed form, which on release in the acidic environment of the stomach caused gelation of the pectin. In vitro studies demonstrated diffusion-controlled release of paracetamol from the gels over a period of 6 h. A bioavailability of approximately 96% of that of a paracetamol solution could be achieved from gels containing an identical dose of drug formed in situ in the stomachs of rats, with appreciably lower peak plasma levels and a sustained release of drug over a period of at least 6 h.  相似文献   

13.
The aim of this study was to prepare and evaluate calcium-free sustained release drug delivery systems, based on the in-situ gelation of oral suspensions containing chitosan, sodium alginate and Ranitidine as drug model. The combined effects of polymer concentrations and their interactions on the rheological characteristics of both gels and suspensions and, on the kinetics of drug release were evaluated by using a central composite face-centered design. Rheological analysis showed that suspensions were potentially stable, with a viscosity increased by 1000 times compared to that of water. In addition, the obtained gels were consistent; their storage modulus could reach values close to 50?kPa when alginate concentration was greater than 7.5?g/100?mL and chitosan was fixed to 0.5?g/100?mL. In these conditions gels should have a higher gastric residence time, in comparison to the standard gastric emptying time (~2?h). Evaluation of the in-vitro release kinetics of Ranitidine showed that the association of the lowest concentration of chitosan (0.5?g/100?mL) with higher alginate concentrations generates sustained release kinetics profiles. The time corresponding to 63% of release was found close to 1.5?h, in which case the process is governed by Fickian diffusion. Finally, calcium-free alginate-chitosan based on the in-situ gelation of suspensions is advantageous as a drug delivery system for sustained-release.  相似文献   

14.
Context: Injectable implants are biodegradable, syringeable formulations that are injected as liquids, but form a gel inside the body due to a change in pH, ions or temperature.

Objective: To investigate the effect of polymer concentration, pH, ions and temperature on the gel formation of β-glucan, a natural cell-wall polysaccharide derived from barley, with particular emphasis on two-phase system formation after addition of dextran or PEG.

Materials and methods: Oscillation viscometry was used to evaluate the gel character by measuring flow index (N), storage (G′) and loss (G″) moduli. Two-phase systems were further characterized for hardness and syringeability using a texture analyzer. Finally, in vitro release characteristics were determined using Franz diffusion cells.

Results: Oscillation viscometry revealed that only addition of dextran or PEG resulted in distinct gel formation. This was seen by a decrease in N after polymer addition. Moreover, hardness (in g) of the gels increased significantly (p?<?0.001) from 3.65?±?0.43 to 34.30?±?8.90 (dextran) and 805.80?±?5.30 (PEG) 24?h after polymer addition. In vitro release profiles showed significantly (p?<?0.05) reduced AUC0–8 h, k and percentage of drug released from two-phase systems compared to β-glucan dispersions, with the PEG system resulting in the lowest amount released over 8?h (15.1?±?1.6%).

Discussion: The unfavorable mixing enthalpy and higher water affinity of PEG resulted in the formation of a dense β-glucan gel.

Conclusion: 1.5% (w/w) β-glucan combined with PEG at a ratio of 1:3 seemed to be the most promising injectable formulation with respect to fastest gel formation, increased hardness and sustained release.  相似文献   

15.
The aim of this study was to evaluate the potential of an in situ gelling pectin formulation as a vehicle for the oral sustained delivery of theophylline and cimetidine. In vitro studies demonstrated diffusion-controlled release of theophylline from 1, 1.5, and 2% w/v pectin gels. Release of this drug from 1.5% w/v pectin gels formed in situ in rabbit stomach was sustained over a period of 12 hours giving a theophylline bioavailability some seven fold higher than when administered from a commercial syrup. In contrast, interactions between cimetidine and pectin led to weak gelation of the pectin sols that prevented any meaningful determination of in vitro release characteristics. Similarly, in vivo release profiles from pectin formulations containing cimetidine were similar to that from a solution of this drug in buffer, indicative of weak gelation. Examination of the content of the rabbit stomach 5 hours after administration of 1.5% w/v pectin sols containing drug confirmed gel formation, but gels containing cimetidine were noticeably softer than those containing theophylline.  相似文献   

16.
The study evaluated different mucoadhesive polymeric hydrogels for nasal delivery of acyclovir. Gels containing poly-N-vinyl-2-pyrrolidone (PVP) were prepared with crosslinking achieved by irradiation with a radiation dose of 15 kGy being as efficient as 20 kGy. Gels containing chitosan and carbopol were also evaluated. The mucoadhesive properties of gels were measured by a modification of a classical tensile experiment, employing a tensile tester and using freshly excised sheep nasal mucosa. Considering the mucoadhesive force, chitosan gel and gel prepared with 3% PVP in presence of polyethylene glycol (PEG) 600 were the most efficient. The in vitro drug release depended on the gel composition. Higher release rates were obtained from PVP gels compared to chitosan or carbopol gels. The release rate of drug from PVP gels was increased further in presence of PEG or glycerol. Histopathological investigations proved that the PVP was a safe hydrogel to be used for mucosal delivery. The PEG in gel formulations caused less damages to the nasal mucosal compared to formulation containing glycerol.  相似文献   

17.
New topical totally aqueous formulations that improve the low water solubility of minoxidil and realize an adequate permeability of drug in the skin are proposed. These formulations are lacking in propylene glycol and alcohol that are the principal irritant ingredients present in minoxidil commercial solutions. In order to enhance poor water solubility of minoxidil randomly methyl-β-cyclodextrin was used, and four hydrogels such as, calcium alginate, sodium alginate, carbopol 934 and hydroxyethylcellulose were utilized to ensure a prolonged time of contact with the scalp. The inclusion complex minoxidil/methyl-β-cyclodextrin with a molar ratio 1:1 was obtained by freeze drying and evaluated by NMR, FT-IR and DSC analysis. An apparent stability constant of formed inclusion complex was calculated by phase solubility diagram and its value was 400?M?1. The solid inclusion complex was used to prepare gel formulations with similar dose to minoxidil commercial solution. The gels were evaluated for various technological parameters including rheological behavior, in vitro drug release and ex vivo permeation through pig skin. The best performance was observed for the calcium alginate formulation.  相似文献   

18.
Background: Miconazol, an antimycotic drug, is commonly formulated into semisolid formulations designed to be applied in the oral cavity to treat oral candidiasis. However, given its limited aqueous solubility, permeation through the biological membranes is low and therefore its activity is also limited. Cyclodextrins (CDs) have been widely used to increase the solubility and stability of poorly water-soluble drugs. Aim: The aim of this study is to formulate a gel containing an inclusion complex between a modified CD, methyl-β-cyclodextrin (MβCD), and miconazole (MCZ). The influence of the CD on the textural properties of the prepared gel and the drug release from formulation were evaluated. Methods: The gels were prepared using two polymers, Carbopol 71G and Pluronic F127, which were selected taking into account their bioadhesiveness and thermal-sensitive gelling properties, respectively. Texture profile analyses were performed at two different temperatures to ascertain the influence of the temperature on the gel texture properties. The in vitro MCZ release profiles from the prepared gel and the commercial gel formulations were evaluated and compared using modified Franz diffusion cells. Results: The addition of MβCD to the gel resulted in a decrease of the gel adhesiveness and firmness, and the MCZ release profile through f1 and f2 proved to be similar to the commercial product. Conclusions: A gel comprising miconazol in the form of an inclusion complex with MβCD showed suitable textural properties to be applied to the buccal mucosa. The MβCD enhanced the solubility of the MCZ in the gel formulation resulting in adequate in vitro drug release profiles.  相似文献   

19.
Gel-formulations containing a nonsteroidal anti-inflammatory drug, tolmetin, were prepared using three different carbomers namely, Carbopol™ 934, 940 and 941. Effects of cosolvent composition, carbomer type, carbomer concentration and drug concentration on drug release from the gels were analyzed by factorial design. Gels with high aqueous content yielded significantly higher tolmetin release rates than gels with lower aqueous content. Although no significant differences in drug release characteristics were observed between the three carbomer gels, there was a trend in the release profiles; fastest drug release was observed from Carbopol™ 941 gels and the slowest drug release was observed from Carbopol™ 940 gels. Increasing the carbomer concentration from 1% w/w to 2% w/w had no significant effect on drug release from gel formulations prepared with all the three different types of carbomers. However, increasing the tolmetin concentration in the gels from 1% w/w to 4% w/w resulted in a dramatic increase in drug release. An investigation of the mechanism of drug release from the gels revealed that tolmetin release was diffusion controlled, except at the outset.  相似文献   

20.
Objective: The present investigation was aimed at optimizing of estradiol (E2) loaded l-amino acid derivatives organogel formulations resulting in improved the high initial release problems and sustained release of E2.

Methods: The visco-elastic properties of blank organogels were measured by rheometer. The E2 organogel formulations were optimized using a central composite design. Also, the effect of gelator structure and composition of the gel formulations on release behavior (in vitro and in vivo) had been studied.

Results: The change of the gelator structure could affect significantly the stiffness of the implants. The release behavior of gel without N-Methyl-2-pyrrolidinone (NMP) was controlled by gel corrosion only. While the drug release of the gel with NMP was controlled by both corrosion and diffusion. The high initial release problems of the organogels were improved by optimizing the formulations. The system consisting by N-Lauroyl l-lysine methyl ester (LLM) derivative in the oil indicated the lowest initial drug release, showed a much lower blood drug level and maintained a steady state for nearly 1 month.

Conclusion: Organogels based on l-lysine methyl ester derivative were ideal carriers for long-term parenteral administration of E2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号