首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This paper proposes a new circuit topology of the three‐phase soft‐switching PWM inverter and PFC converter using IGBT power modules, which has the improved active auxiliary switch and edge resonant bridge leg‐commutation‐link soft‐switching snubber circuit with pulse current regenerative feedback loop as compared with the typical auxiliary resonant pole snubber discussed previously. This three‐phase soft‐switching PWM double converter is more suitable and acceptable for a large‐capacity uninterruptible power supply, PFC converter, utility‐interactive bidirectional converter, and so forth. In this paper, the soft‐switching operation and optimum circuit design of the novel type active auxiliary edge resonant bridge leg commutation link snubber treated here are described for high‐power applications. Both the main active power switches and the auxiliary active power switches achieve soft switching under the principles of ZVS or ZCS in this three‐phase inverter switching. This three‐phase soft‐switching commutation scheme can effectively minimize the switching surge‐related electromagnetic noise and the switching power losses of the power semiconductor devices; IGBTs and modules used here. This three‐phase inverter and rectifier coupled double converter system does not need any sensing circuit and its peripheral logic control circuits to detect the voltage or the current and does not require any unwanted chemical electrolytic capacitor to make the neutral point of the DC power supply voltage source. The performances of this power conditioner are proved on the basis of the experimental and simulation results. Because the power semiconductor switches (IGBT module packages) have a trade‐off relation in the switching fall time and tail current interval characteristics as well as the conductive saturation voltage characteristics, this three‐phase soft‐switching PWM double converter can improve actual efficiency in the output power ranges with a trench gate controlled MOS power semiconductor device which is much improved regarding low saturation voltage. The effectiveness of this is verified from a practical point of view. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 155(4): 64–76, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20207  相似文献   

2.
In this paper, a two‐switch high‐frequency flyback transformer‐type zero voltage soft‐switching PWM DC‐DC converter using IGBTs is proposed. Effective applications for this power converter can be found in auxiliary power supplies of rolling stock transportation and electric vehicles. This power converter is basically composed of two active power switches and a flyback high‐frequency transformer. In addition to these, two passive lossless snubbers with power regeneration loops for energy recovery, consisting of a three‐winding auxiliary high‐frequency transformer, auxiliary capacitors and diodes are introduced to achieve zero voltage soft switching from light to full load conditions. Furthermore, this power converter has some advantages such as low cost circuit configuration, simple control scheme, and high efficiency. Its operating principle is described and to determine circuit parameters, some practical design considerations are discussed. The effectiveness of the proposed power converter is evaluated and compared with the hard switching PWM DC‐DC converter from an experimental point of view, and the comparative electromagnetic conduction and radiation noise characteristics of both DC‐DC power converter circuits are also depicted. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 152(3): 74–81, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20081  相似文献   

3.
This paper describes a soft‐switching interleaved power factor correction (PFC) converter with a lossless snubber. AC–DC converters require a unity input power factor characteristic with highly efficient operation to prevent the inflow of harmonic current to the power source. The proposed PFC converter improves the input current ripple with interleave control. The converter realizes a high efficiency by the soft‐switching operation of all switching devices without a large auxiliary resonant circuit. This paper introduces the soft‐switching operation of the converter. In order to confirm the validity of the proposed converter, experiments with a prototype of the PFC converter have been performed. The experimental results indicate that the proposed converter can realize the soft‐switching operation of all switching devices, a reduction in the input current ripple, a unity power factor of 98% or more, a sinusoidal input current, and constant output voltage control. The efficiency of the proposed PFC converter with a lossless snubber is higher than that without the lossless snubber. The results presented in this paper confirm the validity of the proposed converter.  相似文献   

4.
In this paper, a new interleaved non‐isolated bidirectional dc–dc converter with capability of zero voltage switching and high voltage gain is proposed. In the proposed converter by using two coupled inductors and one capacitor, the voltage gain is extended. Moreover, by using only an auxiliary circuit that includes an inductor and two capacitors, the zero voltage switching (ZVS) of two used switches in the first phase of converter can be achieved. The ZVS operation of two used switches in the second phase is always obtained without using any extra auxiliary circuit. This converter similar to other interleaved converters has low input current ripple and low current stress on switches. In this paper, the proposed converter is analyzed in all operating modes, and also the voltage gain, required conditions for ZVS operation of switches, voltage and current stresses of all switches, and the value of input current ripple in both boost and buck operations are obtained. Finally, the accuracy performance of the proposed converter is verified through simulation results in EMTDC/PSCAD software. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
A multiphase dc‐dc converter is effective for miniaturization and achieving high‐power density in a switching power supply. However, its mathematical modeling becomes complex as the phase number of the circuit increases. This study proposes a new modeling method to derive a reduced‐order method in a simple manner. The frequency characteristics of the reduced‐order model are fit to those of the original mathematical model of the multiphase dc‐dc converter. Therefore, the efficacy of the proposed method is validated.  相似文献   

6.
In this paper, a new nonisolated free ripple input current bidirectional dc‐dc converter with capability of zero voltage switching (ZVS) is proposed. The free ripple input current condition at low voltage side is achieved by using third winding of a coupled inductor and a capacitor for the whole range of duty cycles. In the proposed structure, the voltage conversion ratio can be more increased by adding the turn ratio of the second winding of the coupled inductor for the whole range of duty cycles. By adjusting the value of an auxiliary inductor in the topology of the converter, according to the power, the ZVS operation of the implemented 2 switches can be achieved throughout the whole power range. The mentioned features of proposed converter are validated theoretically for both boost and buck operations. In this paper, the proposed converter is analyzed for all operating modes. Moreover, all equations of the voltages and currents of all components, voltage conversion ratio, the required conditions for ZVS operation of switches, and also required conditions for canceling input current ripple at low voltage side are obtained. Finally, the performance of the proposed converter is reconfirmed through experimental and EMTDC/PSCAD simulation results.  相似文献   

7.
A soft switching two‐switch forward converter is presented to achieve zero voltage switching (ZVS) turn‐on of switching devices. In the adopted converter, a buck‐boost type of active clamp is connected in parallel with the primary winding of transformer. The energy stored in the transformer leakage inductance and magnetizing inductance can be recovered so that the peak voltage stress of switching devices is limited. The resonance between the transient interval of two main and auxiliary switches is used to achieve ZVS turn‐on of all switches. The current doubler synchronous rectifier is used in the secondary side of transformer for reducing the root mean square value of output inductor current, transformer secondary winding current and output voltage ripple by cancelling the current ripple of two output inductors. First, the circuit configuration and the principles of operation are analyzed in detail. The steady‐state analysis and design consideration are also presented. Finally, experimental results with a laboratory prototype based on a 380 V input and 12 V/30 A output were provided to verify the effectiveness of the proposed converter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The main objective of this project is to study the analysis and design of an isolated three-phase bidirectional dc-dc converter connected to the dc microgrid system. The proposed topology achieves efficient power conversion with a wide input voltage range, continuous input current, and bidirectional operation. In forward mode operation, the topology acts as a three-phase push-pull converter to reach a step-up voltage conversion ratio (90 to 450 V ). In backward mode operation, the converter acts as an interleaved flyback converter to provide a step-down voltage conversion ratio (450 to 90 V ). Over and above that, in both operation senses, the dc voltage gain is presented. The main advantages of this topology are high-switching frequency, the three-phase transformer that provides galvanic isolation between the dc voltage link bus to the battery or ultra-capacitor storage, and input/output filters size reduction. Besides, a fewer number of power switches, the frequency of output voltage, and input current ripple are three times higher than the switching frequency. The three active switches are connected to the same reference, which simplifies the gate drive circuit. Ultimately, the theoretical analysis of the proposed topology is carefully confirmed with the experimental results of the 4 kW converter prototype.  相似文献   

9.
This paper presents a new DC/DC converter with series half‐bridge legs for high voltage application. Two half‐bridge legs connected in series and two split capacitors are used in the proposed circuit to limit the voltage stress of each active switch at one‐half of input voltage. Thus, active switches with low voltage stress can be used at high DC bus application. In the proposed converter, two circuit modules are operated with an interleaved pulse‐width modulation scheme to reduce the input and output ripple currents and to achieve load current sharing. In each circuit module, two resonant tanks are operated with phase‐shift one‐half of switching cycle such that the frequency of the input current is twice the frequency of the resonant inductor current. Based on the resonant behavior, all MOSFETs are turned on at zero voltage switching with the wide ranges of input voltage and load conditions. The rectifier diodes can be turned off at zero current switching if the switching frequency is less than the series resonant frequency. Thus, the switching losses on power semiconductors are reduced. The proposed converter can be applied for high input voltage applications such as three‐phase 380‐V utility system. Finally, experiments based on a laboratory prototype with 960‐W rated power are provided to demonstrate the performance of proposed converter. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This paper proposes a novel zero‐current‐switching series resonant high‐voltage DC–DC converter with reduced component count. The series resonant inverter in the proposed topology has two power switches (insulated‐gate bipolar transistors, IGBTs), two resonant capacitors, and only one high‐voltage transformer (HVT) with center‐tapped primary windings. The power switches are connected in the form of a half‐bridge network. The leakage inductances of the transformer's primary windings together with the resonant capacitors form two series resonant circuits. The series resonant circuits are fed alternately by operating the power switches with interleaved half switching cycle. The secondary winding of the HVT is connected to a bridge rectifier circuit to rectify the secondary voltage. The converter operates in the discontinuous conduction mode (DCM) and its output voltage is regulated by pulse frequency modulation. Therefore, all the power switches turn on and off at the zero‐current switching condition. The main features of the proposed converter are its lower core loss, lower cost, and smaller size compared to previously proposed double series resonant high voltage DC–DC converters. The experimental results of a 130‐W prototype of the proposed converter are presented. The results confirm the excellent operation and performance of the converter. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

11.
The focus of this paper is on a simple half‐bridge converter that performs power factor correction (PFC) using current sensorless control. Current sensors increase cost, auxiliary power required, conduction losses, and volume of the PFC converter. Moreover, measurement of high frequency current is demanding, especially in cost‐sensitive applications. The PFC converter proposed combines simple half‐bridge topology and improved current sensorless‐control algorithm that takes into account conduction losses. These losses influence volt‐second balance in the input inductor and result in distorted grid current shape. Their effect is especially evident in half‐bridge converter, where input inductor operates with high voltage swing. The current sensorless control method proposed compensates this influence and allows achieving sinusoidal current shape. First, the phenomenon of current distortion was shown with numerical simulation in PSIM package. Experimental prototype rated for 350 W power was built to verify theoretical and simulation results. Experimental results are in good agreement with those obtained with simulation and theoretically. The PFC converter proposed features low cost of realization and can be used in consumer equipment for connection to the grid. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes a new power decoupling method for a high‐frequency cycloconverter which converts the single‐phase line‐frequency ac input to the high‐frequency ac output directly. The cycloconverter consists of two half‐bridge inverters, two input filter capacitors, and a series‐resonant circuit. The proposed power decoupling method stores the input power ripple at double the line frequency in the filter capacitors. Therefore, the proposed method achieves a unity power factor in ac input and a constant current amplitude in the high‐frequency output without any additional switching device or energy storage element. This paper theoretically discusses the principle and operating performance of the proposed power decoupling method, and the viability is confirmed by using an experimental isolated ac‐to‐dc converter based on the high‐frequency cycloconverter. As a result, the proposed power decoupling method effectively improved the displacement power factor in the line current to more than 0.99 and reduced the output voltage ripple to 4% without any electrolytic capacitor.  相似文献   

13.
In most cases, PWM power-factor-corrected (PFC) converters are constructed from a diode rectifier and an active power circuit such as a boost or buck-boost chopper. Besides the PFC operation, the active power circuit can control the dc output voltage. The output voltage of the PAM inverters is controlled by varying the level of the dc input voltage. The PAM method reduces the voltage and current stresses of the inverter and motors. This paper proposes a new PAM inverter system with high power factor converter to obtain a sinusoidal input current. The proposed PAM method to reduce the torque ripple in the induction motor can reduce switching losses by providing a pausing interval where the switching operation stops during part of one period. © 1998 Scripta Technica, Electr Eng Jpn, 124(2): 43–52, 1998  相似文献   

14.
该文介绍了一种新型的带有简单辅助电路的零电压零电流开关(ZVZCS)三电平DC/DC变换器,它的辅助电路不含耗能元件和有源开关,可实现超前管的零电压开通和滞后管的零电流关断。耦合电感取代了常规滤波电感,它所感应出的电压由功率变压器反射到初级,使得变换器在零状态时的循环电流减小到零。通过改变耦合线圈的匝数比,可以任意设置用于电流回零的电压幅值的大小,调节电流回零的时间。文中介绍了该变换器的工作原理,讨论了设计参数。通过实验验证,该电路具有辅助电路简单、效率高、整流二极管承受的电压低和环流自动调节等优点,适用于高电压、大功率的应用场合。  相似文献   

15.
This paper describes a new single‐phase buck‐boost power‐factor‐correction (PFC) converter with output‐voltage, ripple reducing operation. The converter consists of a conventional buck‐boost PFC converter and an additional switch to obtain a freewheeling mode of the dc inductor current, and is operated by two modulators. The first modulator controls the buck‐boost switch to obtain PFC. The other modulator controls the square value of the instantaneous dc inductor current to perform the output‐voltage‐ripple‐reducing operation. In the two modulations, the time integral value of the input and output currents in each modulation period are controlled directly and indirectly, respectively. Thus, modulation errors or undesirable distortions of the input current and output voltage ripple are eliminated even if the dc inductor current produces large ripple in a low‐frequency range. The theories and combination techniques for the two modulators, implementation, and experimental results are described. © 1998 Scripta Technica, Electr Eng Jpn, 126(2): 56–70, 1999  相似文献   

16.
This paper proposes a highly efficient drive method for an open‐winding induction machine with a single constant voltage source and a single capacitor. By focusing on the phase voltage of the open‐winding machine, which is determined by the phase difference and the dc voltage of each power converter, it is possible to control the peak value of the phase voltage by controlling the voltage of the capacitor. Thus, a reduction in the iron loss due to harmonic voltage in the open‐winding machine is expected. In the proposed method, the voltage of the capacitor is controlled by the difference between the two reference voltages of the power converter, which depends on the machine power factor and the phase difference of the power converter connected to both ends of the winding. Based on experimental results, the converter loss and the machine loss can be reduced by controlling the voltage of the capacitor in accordance with the machine speed using the proposed method.  相似文献   

17.
An isolated ac‐dc converter has been used in various applications, such as power supply and as a battery charger for electric vehicle. In conventional converters, a loss in each conversion stage can be reduced by applying a soft switching method. However, a conventional converter has many conversion stages including the rectifier stage, power factor correction, and dc/dc converter stages; thus, it is difficult to reduce the total converter loss and size. In this paper, we propose a novel isolated‐type ac‐dc converter with only one conversion stage; it can realize a zero‐voltage switching operation in all switching devices.  相似文献   

18.
A novel isolated high voltage‐boosting converter, derived from the traditional forward converter, is presented in this paper. As compared with the traditional forward converter, the demagnetizing winding of the transformer in the proposed converter is used not only to demagnetize but also to improve the voltage conversion ratio. Therefore, the duty cycle is not limited, and the utilization of the transformer, also called coupled inductor, can be increased also. Furthermore, the proposed converter maintains the advantage of possessing a non‐pulsating output current, leading to a small output voltage ripple. Moreover, by applying one additional voltage‐boosting winding to the transformer, the voltage conversion ratio can be significantly improved. In addition, an active clamp circuit is employed in the proposed converter to reduce the voltage stress of the main switch, caused by the leakage inductance in the transformer, and the switches can achieve zero‐voltage switching. Finally, the analysis of operating principles, choice of the turns, turns ratio, core size, and each wire size of the coupled inductor are described in detail, and the experimental results with a prototype with 12‐V input voltage, 100‐V output voltage, and 100‐W output power are provided to verify the feasibility and effectiveness of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a single lossless inductive snubber‐assisted ZCS‐PFM series resonant DC‐DC power converter with a high‐frequency high‐voltage transformer link for industrial‐use high‐power magnetron drive. The current flowing through the active power switches rises gradually at a turned‐on transient state with the aid of a single lossless snubber inductor, and ZCS turn‐on commutation based on overlapping current can be achieved via the wide range pulse frequency modulation control scheme. The high‐frequency high‐voltage transformer primary side resonant current always becomes continuous operation mode, by electromagnetic loose coupling design of the high‐frequency high‐voltage transformer and the magnetizing inductance of the high‐frequency high‐voltage transformer. As a result, this high‐voltage power converter circuit for the magnetron can achieve a complete zero current soft switching under the condition of broad width gate voltage signals. Furthermore, this high‐voltage DC‐DC power converter circuit can regulate the output power from zero to full over audible frequency range via the two resonant frequency circuit design. Its operating performances are evaluated and discussed on the basis of the power loss analysis simulation and the experimental results from a practical point of view. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 153(3): 79–87, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20126  相似文献   

20.
In this paper, a new multiport zero voltage switching dc‐dc converter is proposed. Multiport dc‐dc converters are widely applicable in hybrid energy generating systems to provide substantial power to sensitive loads. The proposed topology can operate in 3 operational modes of boost, buck, and buck‐boost. Moreover, it has zero voltage switching operation for all switches and has the ability to eliminate the input current ripple; also, at low voltage side, the input sources can be extended. In addition, it has the ability of interfacing 3 different voltages only by using 3 switches. In this paper, the proposed topology is analyzed theoretically for all operating modes; besides, the voltage and current equations of all components are calculated. Furthermore, the required soft switching and zero input currents ripple conditions are analyzed. Finally, to demonstrate the accurate performance of the proposed converter, the Power System Computer Aided Design(PSCAD)/Electro Magnetic Transient Design and Control(EMTDC) simulation and experimental results are extracted and presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号