首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Psilocybin and its direct precursor baeocystin are indole alkaloids of psychotropic Psilocybe mushrooms. The pharmaceutical interest in psilocybin as a treatment option against depression and anxiety is currently being investigated in advanced clinical trials. Here, we report a biocatalytic route to synthesize 6-methylated psilocybin and baeocystin from 4-hydroxy-6-methyl-l -tryptophan, which was decarboxylated and phosphorylated by the Psilocybe cubensis biosynthesis enzymes PsiD and PsiK. N-Methylation was catalyzed by PsiM. We further present an in silico structural model of PsiM that revealed a well-conserved SAM-binding core along with peripheral nonconserved elements that likely govern substrate preferences.  相似文献   

4.
Loganin is an iridoid glycoside of interest as both an intermediate in the biosynthesis of indole alkaloids in plants and as a bioactive compound itself. Loganic acid methyltransferase catalyzes the methylation of a monoterpenoid glycoside precursor to produce loganin and demonstrates stereospecificity for the (6S,7R) substrate. We have biochemically characterized this biocatalyst and elucidated the basis for its strict substrate specificity. These studies could help facilitate the design of new classes of monoterpenoid indole alkaloids of pharmaceutical interest.  相似文献   

5.
The histone methyltransferase SET7/9 methylates not only histone but also non‐histone proteins as substrates, and therefore, SET7/9 inhibitors are considered candidates for the treatment of diseases. Previously, our group identified cyproheptadine, used clinically as a serotonin receptor antagonist and histamine receptor (H1) antagonist, as a novel scaffold of the SET7/9 inhibitor. In this work, we focused on dibenzosuberene as a substructure of cyproheptadine and synthesized derivatives with various functional groups. Among them, the compound bearing a 2‐hydroxy group showed the most potent activity. On the other hand, a 3‐hydroxy group or another hydrophilic functional group such as acetamide decreased the activity. Structural analysis clarified a rationale for the improved potency only by tightly restricted location and type of the hydrophilic group. In addition, a SET7/9 loop, which was only partially visible in the complex with cyproheptadine, became more clearly visible in the complex with 2‐hydroxycyproheptadine. These results are expected to be helpful for further structure‐based development of SET7/9 inhibitors.  相似文献   

6.
A novel epigenetic modulator that displays a DNMT1 inhibition and DNMT3A activation profile was characterized (compound 8 ). This compound is a derivative of palmitic acid that incorporates the putative reactive functional group (diynone) of the peyssonenyne natural products. Other analogues containing the diynone or an acetoxyenediyne did not show the same biological profile. In U937 human leukemia cells, diynone 8 induced cell differentiation and apoptosis, which correlated with the expression of Fas protein. Very surprisingly, diynone 8 was toxic to normal human fibroblasts (BJ) and mouse embryo fibroblasts (MEF), but not to immortalized human fibroblasts (BJEL); this unique effect was not observed with the classical DNMT inhibitor 5‐azacytidine. Therefore, compound 8 interferes in a very specific manner with signaling pathways, the activities of which differ between normal and immortalized cell types. This toxicity is reminiscent of the effects of Dnmt1 ablation on mouse fibroblasts. In fact, some of the genes deregulated by the loss of Dnmt1 are similarly deregulated by 8 , but not by the DNMT inhibitor SGI‐1027.  相似文献   

7.
The recent outbreaks of Zika virus (ZIKV) infection worldwide make the discovery of novel antivirals against flaviviruses a research priority. This work describes the identification of novel inhibitors of ZIKV through a structure-based virtual screening approach using the ZIKV NS5-MTase. A novel series of molecules with a carbazoyl-aryl-urea structure has been discovered and a library of analogues has been synthesized. The new compounds inhibit ZIKV MTase with IC50 between 23–48 μM. In addition, carbazoyl-aryl-ureas also proved to inhibit ZIKV replication activity at micromolar concentration.  相似文献   

8.
Ansamitocins are potent antitumor agents produced by Actinosynnema pretiosum. As deduced from their structures, an N‐methylation on the amide bond is required among the various modifications. The protein encoded by asm10 belongs to the SAM‐dependent methyltransferase family. Through gene inactivation and complementation, asm10 was proved to be responsible for the N‐methylation of ansamitocins. Asm10 is a 33.0 kDa monomer, as determined by gel filtration. By using N‐desmethyl‐ansamitocin P‐3 as substrate, the optimal temperature and pH for Asm10 catalysis were determined to be 32 °C and 10.0, respectively. Asm10 also showed broad substrate flexibility toward other N‐desmethyl‐ansamycins and synthetic indolin‐2‐ones. Through site‐directed mutagenesis, Asp154 and Leu155 of Asm10 were confirmed to be essential for its catalysis, possibly through the binding of SAM. The characterization of this unique N‐methyltransferase has enriched the toolbox for engineering N‐methylated derivatives from both natural and synthetic compounds; this will allow known potential drugs to be modified.  相似文献   

9.
10.
11.
Se-benzyl selenoimidazolium salts are characterized by remarkable alkyl-transfer potential under physiological conditions. Structure-activity relationship studies show that selective monoalkylation of primary amines depends on supramolecular interactions between the selenoimidazole leaving group and the target nucleophile. We demonstrate that these reagents can be used for site-selective and nearly quantitative modification of the model protein lysozyme on Lys13, bypassing the higher intrinsic reactivities of Lys1 and Lys33. These observations introduce selenoimidazolium salts as novel class of electrophiles for selective N-alkylation of native proteins.  相似文献   

12.
A one‐pot, two‐step biocatalytic platform for the regiospecfic C‐methylation and C‐ethylation of aromatic substrates is described. The tandem process utilises SalL (Salinospora tropica) for in situ synthesis of S‐adenosyl‐l ‐methionine (SAM), followed by alkylation of aromatic substrates by the C‐methyltransferase NovO (Streptomyces spheroides). The application of this methodology is demonstrated for the regiospecific labelling of aromatic substrates by the transfer of methyl, ethyl and isotopically labelled 13CH3, 13CD3 and CD3 groups from their corresponding SAM analogues formed in situ.  相似文献   

13.
14.
Ergothioneine has emerged as a crucial cytoprotectant in the pathogenic lifestyle of Mycobacterium tuberculosis. Production of this antioxidant from primary metabolites may be regulated by phosphorylation of Thr213 in the active site of the methyltransferase EgtD. The structure of mycobacterial EgtD suggests that this post-translational modification would require a large-scale change in conformation to make the active-site residue accessible to a protein kinase. In this report, we show that, under in vitro conditions, EgtD is not a substrate of protein kinase PknD.  相似文献   

15.
Histone methyltransferases (HMTs) have attracted considerable attention as potential targets for pharmaceutical intervention in various malignant diseases. These enzymes are known for introducing methyl marks at specific locations of histone proteins, creating a complex system that regulates epigenetic control of gene expression and cell differentiation. Here, we describe the identification of first-generation cell-permeable non-nucleoside type inhibitors of SETD2, the only mammalian HMT that is able to tri-methylate the K36 residue of histone H3. By generating the epigenetic mark H3K36me3, SETD2 is involved in the progression of acute myeloid leukemia. We developed a structure-based virtual screening protocol that was first validated in retrospective studies. Next, prospective screening was performed on a large library of commercially available compounds. Experimental validation of 22 virtual hits led to the discovery of three compounds that showed dose-dependent inhibition of the enzymatic activity of SETD2. Compound C13 effectively blocked the proliferation of two acute myeloid leukemia (AML) cell lines with MLL rearrangements and led to decreased H3K36me3 levels, prioritizing this chemotype as a viable chemical starting point for drug discovery projects.  相似文献   

16.
Aminocoumarin antibiotics are highly potent inhibitors of bacterial gyrase and represent a class of antibiotics that are very suitable for the generation of new compounds by metabolic engineering. In this study, the putative methyltransferase gene cloP in the biosynthetic gene cluster of clorobiocin was inactivated. Expression of the modified gene cluster in the heterologous host Streptomyces coelicolor M512 gave three new aminocoumarin antibiotics. The structures of the new compounds were elucidated by MS and 1H NMR, and their antibacterial activities were determined. All three compounds lacked clorobiocin's methyl group at 4-OH of the deoxysugar moiety, noviose. They differed from each other in the position of the 5-methylpyrrole-2-carbonyl group, which was found to be attached to either 2-OH, 3-OH or 4-OH of noviose. Attachment at 4-OH resulted in the highest antibacterial activity. This is the first time that an aminocoumarin antibiotic acylated at 4-OH in noviose has been detected.  相似文献   

17.
An inflammasome is an intracellular protein complex that is activated in response to a pathogenic infection and cellular damage. It triggers inflammatory responses by promoting inflammatory cell death (called pyroptosis) and the secretion of pro-inflammatory cytokines, interleukin (IL)-1β and IL-18. Many types of inflammasomes have been identified and demonstrated to play a central role in inducing inflammatory responses, leading to the onset and progression of numerous inflammatory diseases. Methylation is a biological process by which methyl groups are transferred from methyl donors to proteins, nucleic acids, and other cellular molecules. Methylation plays critical roles in various biological functions by modulating gene expression, protein activity, protein localization, and molecular stability, and aberrant regulation of methylation causes deleterious outcomes in various human diseases. Methylation is a key determinant of inflammatory responses and diseases. This review highlights the current understanding of the functional relationship between inflammasome regulation and methylation of cellular molecules in inflammatory responses and diseases.  相似文献   

18.
The epiphyte Pseudomonas syringae pv. syringae 22d/93 (Pss22d) produces a toxin that strongly inhibits the growth of its relative, the plant pathogen P. syringae pv. glycinea. The inhibition can be overcome by supplementing the growth medium with the essential amino acid, L-arginine; this suggests that the toxin acts as an inhibitor of the arginine biosynthesis. The highly polar toxin was purified by bioassay-guided fractionation using ion-exchange chromatography and subsequent RP-HPLC fractionation. The structure of the natural product was identified by HR-ESI-MS, HR-ESI-MS/MS, and NMR spectroscopy experiments as 3-methylarginine. This amino acid has previously only been known in nature as a constituent of the peptide lavendomycin from Streptomyces lavendulae. Results of experiments in which labeled methionine was fed to Pss22d indicated that the key step in the biosynthesis of 3-methylarginine is the introduction of the methyl group by a S-adenosylmethionine (SAM)-dependent methyltransferase. Transposon mutagenesis of Pss22d allowed the responsible SAM-dependent methyltransferase of the 3-methylarginine biosynthesis to be identified.  相似文献   

19.
Sugar O‐methylation is a ubiquitous modification in natural products and plays diverse roles. This realization has inspired many attempts to search for novel methyltransferases. Chalcomycins are a group of 16‐membered macrolides containing two methylated sugars that require three methyltransferases for their biosynthesis. Here, we identified that AlmCII, a sugar O‐methyltransferase belonging to the TylF family that was previously only known to methylate sugars with a 4′‐hydroxy group, can methylate a 4′,6′‐dideoxysugar during the biosynthesis of chalcomycins. An in vitro enzymatic assay revealed that AlmCII is divalent metal‐dependent with an optimal pH of 8.0 and optimal temperature of 42 °C. Moreover, the 3′‐O‐demethylated chalcomycins exhibit less than 6 % of the antibacterial activity of their parent compounds. This is the first report demonstrating that a TylF family O‐methyltransferase can use a 4′‐deoxy sugar as a substrate and highlighting the importance of this methylation for the antibacterial activity of chalcomycins.  相似文献   

20.
Homochirality is a signature of biological systems. The essential and ubiquitous cofactor S-adenosyl-l -methionine (SAM) is synthesized in cells from adenosine triphosphate and l -methionine to yield exclusively the (S,S)-SAM diastereomer. (S,S)-SAM plays a crucial role as the primary methyl donor in transmethylation reactions important to the development and homeostasis of all organisms from bacteria to humans. However, (S,S)-SAM slowly racemizes at the sulfonium center to yield the inactive (R,S)-SAM, which can inhibit methyltransferases. Control of SAM homochirality has been shown to involve homocysteine S-methyltransferases in plants, insects, worms, yeast, and in ∼18 % of bacteria. Herein, we show that a recombinant protein containing a domain of unknown function (DUF62) from the actinomycete bacterium Salinispora tropica functions as a stereoselective (R,S)-SAM hydrolase (adenosine-forming). DUF62 proteins are encoded in the genomes of 21 % of bacteria and 42 % of archaea and potentially represent a novel mechanism to remediate SAM damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号