首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对某企业青霉素废水的实际处理工程进行脱氮性能研究,该工程由原先的CASS池(有效容积为7 500 m3)改造成同时硝化反硝化系统。系统稳定运行的数据显示:当处理量为3 533~5 574 m3/d,进水COD、TKN、NH3-N浓度分别为(2 067~4 706)、(230.7~322.4)、(114.7~286.2)mg/L时,出水COD、TN与NH3-N浓度分别为(188~473)、(27.1~34.2)、(0.8~6.1)mg/L。分析认为,系统高效脱氮的原因为:1较高的生物量(5.7~8.3 g/L)与较长的泥龄(25.6d);2系统长期运行稳定,有利于硝化菌与反硝化菌的生长;3在曝气池的前端发生了显著的反硝化脱氮。  相似文献   

2.
中温短程硝化反硝化的影响因素研究   总被引:34,自引:0,他引:34  
通过中温条件下生活污水的SBR法短程硝化反硝化试验发现,当温度为20-30℃时控制进水的pH值可造成硝化过程中亚硝态氮的积累,且平均亚硝化率达95%以上,并得出在温度为20、25和30℃时亚硝化菌的比增长速率分别为0.0113、0.0190、0.0366d^-1。此外,还就氨氮负荷对短程硝化反硝化的影响进行了研究,探索了脱氮过程中的pH值变化规律。  相似文献   

3.
水解酸化/前置反硝化BAF工艺处理城市生活污水   总被引:1,自引:1,他引:0  
大连市污水处理厂(二期工程)采用水解酸化/前置反硝化生物滤池处理工艺,对城市生活污水中COD、TN、氨氮、SS的去除率分别达到83.9%、61.84%、90.65%和92.3%。由于采用化学加药除磷和紫外线消毒的工艺,出水水质全面达到《城镇污水处理厂污染物排放标准》(GB18918—2002)的一级A标准。  相似文献   

4.
对同时硝化反硝化研究进展的分析   总被引:2,自引:1,他引:1  
通过对比传统生物脱氮理论,提出同时硝化反硝化技术的优点,结合国内外研究现状,主要从微环境理论和生物化学方面进行综述,并指明好氧反硝化今后的研究方向,以达到提高系统处理能力和效率的目的。  相似文献   

5.
亚硝酸型硝化———反硝化工艺处理煤气废水研究   总被引:10,自引:0,他引:10  
针对煤气废水的特点,提出亚硝酸型硝化--反硝化处理煤气废水新工艺。试验结果表明,该工艺与常规生物脱氮工艺相比,污染物负荷能力增加,需氧量和碳源需要量减少,反硝化效率明显提高,可提高总氮去除率。  相似文献   

6.
SBR工艺同步硝化反硝化现象及其脱氮效果   总被引:1,自引:0,他引:1  
高飞  韩洪军 《中国给水排水》2006,22(Z1):406-409
采用内径为300mm、高为650 mm的圆柱形SBR反应器进行试验,采用鼓风曝气,用温控仪控制水温在要求的范围内,由时间程序控制器控制进水、闲置、曝气、沉淀和排水全过程,用DO仪和pH计分别在线判断SBR反应器的运行状况,研究SBR系统对有机物和氮的去除过程及其脱氮效果,同时结合试验数据对有氧条件下反硝化及异养硝化菌进行较深入的分析.结果表明DO浓度控制在3~5 mg/L时,其同步硝化反硝化现象明显,脱氮效果最佳,总氮去除率可达80%,COD的去除率达90%.采用同步硝化反硝化脱氮还可以克服污水中碱度不足的现象,由于反硝化不断产生碱度,补充了微生物对有机物和含氮化合物的降解引起水中pH值的下降.当温度为18~25℃时,SBR系统氨氮的去除比较稳定,说明SBR工艺可实现常温同步硝化反硝化.  相似文献   

7.
针对山地丘陵地区简易填埋场壤中流总氮(TN)浓度高且碳氮比(C/N)低、给周边环境带来持续污染问题,采用两级同步硝化反硝化(SND)反应器处理模拟壤中流,并探索了不同C/N(2.3、2.0、1.7、1.5和1.3)下反应器的脱氮性能。结果表明,反应器能在25 d内迅速启动,并在1.5~4.0的C/N下稳定运行,其间反应器外环的总氮容积负荷(NLR)为0.17~0.56 kg/(m3·d),内、外环可通过功能互补应对冲击负荷。C/N在1.5及以上时,反应器的总氮去除率稳定在(85.69±2.22)%。C/N为2.0和1.7时,反应器的同步硝化反硝化率(RSND)分别为71.83%和51.75%,表明同步硝化反硝化在壤中流脱氮中具有重要贡献。此外,好氧反硝化和全程反硝化可能也在脱氮过程中占重要地位。  相似文献   

8.
针对低碳源生活污水(COD/TN值<5,COD<200 mg/L)脱氮除磷效果差的问题,设计并运行了一套具有强化反硝化除磷功能的反应器。该反应器结合污泥外循环侧流除磷、剩余污泥碱解技术,并强化反硝化吸磷功能,采用好氧/缺氧交替运行方式。结果表明:在进水COD、TN、NH3-N、TP平均浓度分别为151、31.37、24.80、5.72 mg/L,C/N、C/P平均值分别为4.81、26.99的情况下,系统具有稳定的脱氮除磷效果,出水COD、TN、NH3-N、TP平均浓度分别为20.63、13.25、0.68和0.10 mg/L,平均去除率分别为86.31%、57.80%、97.26%和98.18%。  相似文献   

9.
以实际生活污水为处理对象,利用两个SBR反应器(分别标记为1<'#>和2<'#>反应器)控制不同运行条件进行好氧亚硝化对比试验,研究了低氨氮生活污水的好氧亚硝化特性.其中,1<'#>反应器恒温加热浓缩污泥,加热温度为36℃、加热时间为40 min;2<'#>反应器延长曝气时间及污泥龄,但不加热浓缩污泥.结果表明,1<'#>反应器出水亚硝态氮浓度最终稳定在30~35 mg/L,占三氮总和的75%~80%,平均亚硝化率为88.08%;2<'#>反应器自第2天起亚硝化率就降为零,平均出水硝态氮浓度为30.68 mg/L,表现为全程硝化.可见,通过控制反应器中浓缩污泥的运行条件可实现低氨氮污水的好氧亚硝化.此外,维持系统中适当的COD水平也有助于低氨氮生活污水好氧亚硝化的实现.  相似文献   

10.
同时硝化/反硝化除磷过程的控制策略研究   总被引:2,自引:1,他引:1  
为实现同时硝化/反硝化除磷(SNDPR)过程,在SBR反应器内,采用模拟低碳源污水和厌氧-交替好氧/缺氧的运行方式对污泥进行培养驯化,成功实现了反硝化聚磷茵和硝化茵的良好共存.在此基础上,考察了厌氧/间歇曝气和厌氧/连续曝气两种模式下SNDPR工艺对污水的处理效果.结果表明,在上述两种模式下,系统对TP的去除率分别为92%和90%,对TN的去除率分别为83%和72%;厌氧/间歇曝气模式更有利于SNDPR工艺对低碳源污水的处理.另外,对电化学参数的研究表明,pH曲线上的"膝点"可近似预示SNDPR过程的结束,而ORP的变化范围及稳定性可预示SNDPR过程中硝化和反硝化除磷同时发生的平衡程度.  相似文献   

11.
SBR亚硝化处理城市生活污水二级出水及其稳定性   总被引:1,自引:0,他引:1  
采用SBR工艺处理A/O除磷工艺出水,考察了影响亚硝化系统稳定性的因素。在室温为(20±3)℃、接种驯化后的亚硝化污泥、进水由高浓度氨氮配水逐渐过渡到A/O除磷工艺处理出水的条件下,采用实时监控策略,以pH值出现拐点作为反应停止标志,逐渐缩短沉降时间,可维持亚硝化的稳定并实现了对生活污水二级处理出水的高效净化。DO、FA与FNA共同维系亚硝化系统的稳定,而延时曝气对亚硝化系统的稳定具有极大的冲击性;当C/N值<1.0时对系统有微弱的抑制作用,但可在短时间内恢复;控制沉降时间由1~2 h逐渐降低至8 min以内可促进污泥颗粒化,平均粒径达到0.57 mm,同时进一步增强了系统的抗冲击能力。  相似文献   

12.
对高浓度氨氮的去除一直是垃圾渗滤液处理中的难点之一,为此利用膜生物反应器(MBR)对渗滤液进行了亚硝酸型硝化反硝化的中试研究。结果表明,当进水氨氮浓度〈1000mg/L、氨氮负荷为0.4kgNH4^+-N/(m^3·d)时,对氨氮的去除率可达80%~90%。当反应器中的游离氨浓度〉5mg/L时,NO2^- —N的积累率可达80%以上,表明游离氨抑制是实现亚硝酸型硝化反硝化的主要原因。当进水碳氮比〉(2:1)时,对总氮的去除率可达70%左右,对碳源的需求量明显低于传统的硝化反硝化工艺;当进水的碳氮比降至1:1时,对总氮的去除率仅为30%左右。  相似文献   

13.
为了探索双污泥反硝化除磷工艺(A2N工艺)的实际运行效果,采用好氧段为活性污泥法的A2N工艺处理无锡某污水处理厂的曝气沉砂池出水.中试结果表明:A2N工艺对COD、TP、磷酸盐、氨氮具有较好的去除效果,出水平均浓度分别为21.6、0.19、0.04和2.73 mg/L,对COD、TP和氨氮的平均去除率分别为80.8%、89.9%和89.3%;进水TN平均为28.8 mg/L,出水平均浓度为12.6 mg/L,平均去除率为55.95%;设置后曝气池确保了出水磷酸盐和氨氮的达标排放,而且通过吹脱氮气,还提高了反硝化聚磷污泥的沉降性能.  相似文献   

14.
新型短程硝化反硝化工艺处理高浓度氨氮废水   总被引:1,自引:0,他引:1  
研发了一种新型短程硝化反硝化工艺——ANITATMShunt,它通过特殊的自控系统来控制N2O的释放。采用500 L的SBR中试装置处理消化污泥脱水上清液,经过18个月的稳定运行表明:通过短程硝化反硝化途径可以实现90%的脱氮率,并且释放的N2O不足总脱氮量的0.7%。将通过pH值、温度和在线监测的NO-2-N浓度实时计算的亚硝酸浓度与亚硝酸浓度设定值进行比对,以便对曝气过程进行调控,从而抑制了N2O的释放并实现了对SBR短程硝化反硝化工艺的自动控制。同时证实了在低溶解氧条件下,由氨氧化菌(AOB)在短程硝化反硝化过程中产生的N2O并非与高亚硝酸盐浓度有直接关系,而是与游离亚硝酸浓度有关。  相似文献   

15.
SBR中亚硝酸型硝化的影响因素研究   总被引:10,自引:0,他引:10  
为实现稳定的NO2^--N积累,对SBR中亚硝酸型硝化的影响因素进行了研究。结果表明:亚硝酸型硝化系统的稳定运行是多个影响因素(进水氨氮浓度、pH值、DO值、温度和SRT等)共同作用的结果,其中控制较低的DO值是关键因素之一。过低的进水氨氮浓度和pH值会导致系统运行的不稳定。当DO为0.5~1.0mg/L、进水氨氮为120~240mg/L、pH值为7.5~8.3.在25、30、35℃均可获得稳定的NO2^--N积累。而温度和SRT不是亚硝酸型硝化系统稳定运行的决定性因素。  相似文献   

16.
龚安军  刘氚 《山西建筑》2011,37(15):106-108
采用CASS工艺对低碳氮比生活污水进行处理研究,试验结果表明:通过外加甲醇将碳氮比调整到5∶1,排水比50%,混合液回流比100%的情况下,最佳运行工况为充水曝气6 h,沉淀1 h,滗水0.5 h,静置0.5 h,在进水COD为210 mg/L-375 mg/L,TN为52 mg/L-62 mg/L,TP为1.9 mg/L-2.9 mg/L,SS为100 mg/L-202 mg/L的情况下,出水COD为5 mg/L-50 mg/L,TN为10 mg/L-21 mg/L,TP为0.5 mg/L-1.2 mg/L,SS为6 mg/L-19 mg/L,出水各项指标稳定且达到排放标准。  相似文献   

17.
双泥SBR系统的短程硝化反硝化和反硝化除磷研究   总被引:2,自引:0,他引:2  
针对我国中小城镇污水低C/N值的水质特点,考察了双泥法SBR工艺的脱氮除磷效果。结果表明:硝化反应器采用生物膜SBR并控制溶解氧为1.0mg/L进行连续曝气,可以实现短程硝化反硝化;在厌氧/缺氧反应器中,聚磷菌能同时利用硝酸盐和亚硝酸盐为电子受体进行反硝化除磷,从而降低了对有机碳源和溶解氧的需求以及能耗。小试系统对模拟城镇污水中COD、TN、TP的平均去除率分别为94.9%、81.2%、89.5%,出水水质达到了《城镇污水处理厂污染物排放标准》(GB18918—2002)的一级A标准。  相似文献   

18.
曝气量对同时硝化/反硝化除磷工艺效能的影响   总被引:1,自引:0,他引:1  
在恒定曝气量、连续曝气的厌氧/低氧SBR反应器内,以碳源偏低的模拟城市污水为研究对象,考察了不同曝气量下的同时硝化/反硝化除磷(SNDPR)效能。当曝气量为40 L/h时,较其他三种曝气量能维持SNDPR的稳定,对TN和TP的去除率分别为79.9%和92.8%,PHB降解速率平稳,硝化和反硝化除磷速率相当,SNDPR脱氮除磷效能最佳。因此,在连续曝气模式下,曝气量过低或过高均不利于SNDPR的持续稳定,且当曝气量过高时,随曝气量的增加则SNDPR发生程度降低,持续时间缩短。同时,PHB降解速率的均衡也是实现稳定的SNDPR的关键因素。  相似文献   

19.
同步硝化反硝化(SND)生物脱氮技术与传统生物脱氮技术相比,具有节省碳源、减少曝气量、可实现单级生物脱氮等优点,故近年来受到水处理工作者的广泛关注.移动床生物膜反应器工艺是上世纪八十年代初发展起来的一种新型水处理工艺,发展十分迅速。本文介绍了移动床生物膜反应器(MBBR)的工艺原理以及工艺特点,主要总结了国内移动床生物膜反应器工艺在同步硝化反硝化技术中的研究和应用进展,指出了该项技术的发展方向和趋势。  相似文献   

20.
曲燕 《山西建筑》2007,33(25):3-4
试验采用人工配制污水,以醋酸钠为COD来源,以硝酸钠为硝氮来源,对SBR颗粒污泥反硝化系统中C/N对反硝化作用的影响、反硝化过程中pH和ORP的变化规律进行了研究,得到适宜的C/N约为5,并验证了通过测定pH和ORP曲线拐点可准确判断反硝化反应终点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号