首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of supported metal catalysts were tested under conditions of steam reforming of acetic acid (HAc), which was selected as a model compound for pyrolysis oil. The influence of several parameters on catalytic activity and selectivity were examined, including catalyst composition, i.e. nature of the metal and the carrier, reaction temperature and time on stream. The metallic phase of such catalysts was comprised of various metals, such as Pt, Pd, Rh, Ru and Ni, which were supported on metal oxides carriers, such as Al2O3Al2O3, La2O3/Al2O3La2O3/Al2O3, MgO/Al2O3MgO/Al2O3 and CeO2/Al2O3CeO2/Al2O3. It was found that Ni-based and Ru-based catalysts present high activity and selectivity toward hydrogen production. Ru catalysts supported on La2O3/Al2O3La2O3/Al2O3 and MgO/Al2O3MgO/Al2O3 carriers, showed good long-term stability as a function of time on stream. However, Ni catalysts were not as stable as Ru catalysts. The amount of carbon deposited on each catalyst was estimated, and it was found that it depends strongly on the nature of the catalyst.  相似文献   

2.
Most of the hydrogen production processes are designed for large-scale industrial uses and are not suitable for a compact hydrogen device to be used in systems like solid polymer fuel cells. Integrating the reaction step, the gas purification and the heat supply can lead to small-scale hydrogen production systems. The aim of this research is to study the influence of several reaction parameters on hydrogen production using liquid phase reforming of sugar solution over Pt, Pd, and Ni supported on nanostructured supports. It was found that the desired catalytic pathway for H2H2 production involves cleavage of C–C, C–H and O–H bonds that adsorb on the catalyst surface. Thus a good catalyst for production of H2H2 by liquid-phase reforming must facilitate C–C bond cleavage and promote removal of adsorbed CO species by the water–gas shift reaction, but the catalyst must not facilitate C–O bond cleavage and hydrogenation of CO or CO2CO2. Apart from studying various catalysts, a commercial Pt/γγ-alumina catalyst was used to study the effect of temperature at three different temperatures of 458, 473 and 493 K. Some of the spent catalysts were characterised using TGA, SEM and XRD to study coke deposition. The amorphous and organised form of coke was found on the surface of the catalyst.  相似文献   

3.
4.
Indirect partial oxidation, or oxidative steam reforming, tests of a bimetallic Pt–Ni catalyst supported on δδ-alumina were conducted in propane–n  -butane mixtures (LPG) used as feed. H2H2 production activity and H2/COH2/CO selectivity were investigated in response to different S/C, C/O2C/O2 and W/F ratios. It was confirmed that higher steam content in the reactant stream increases both the activity and the H2/COH2/CO selectivity of the process. Low residence times created a positive impact on catalyst activity not only for hydrogen but also for carbon monoxide production due to the increased amount of fresh hydrocarbon in the feed stream. Hence, the highest selectivity level was obtained at intermediate residence times. The response of the system to C/O2C/O2 ratio was found to depend on the available steam content due to the complex nature of IPOX. The Pt–Ni catalyst was very prone to catalyst deactivation at low S/C ratios accompanied by high C/O2C/O2 ratios, but this problem was not encountered at high S/C ratios. A comparison of catalyst performance for different propane-to-n-butane ratios in the LPG feed indicated that the Pt–Ni catalyst has slightly better activity and selectivity at higher n-butane contents at the expense of becoming more sensitive to coke deposition.  相似文献   

5.
6.
Two types of Pt- and Ni-based alloy catalysts were synthesized and comparatively tested for hydrogen generation from aqueous borazane (ammonia- borane, BH3NH3)BH3NH3) solution. The experimental results demonstrated that hydrogen release rates from some of the Pt alloys such as PtRu and PtAu are nearly 9 times higher than those from pure Pt surface, and similarly, most of the Ni alloy catalysts exhibit greatly enhanced catalytic activities than pure Ni catalyst. Particularly, hydrogen release from NiAg-catalyzed BH3NH3BH3NH3 hydrolysis can complete quickly at room temperature showing a stable hydrogen yield at H2/BH3NH3ratio=2.9H2/BH3NH3ratio=2.9 (molar ratio), corresponding to 8.7 wt % hydrogen release. Since the Ni alloy catalysts are less costly and highly efficient, it is feasible to use the Ni alloy catalysts for practical hydrogen generation in portable applications.  相似文献   

7.
This paper presents experimental study on catalytic autothermal reforming (ATR) of natural gas (NG) for hydrogen (H2H2) production over sulfide nickel catalyst supported on gamma alumina. The experiments are conducted on a cylindrical reactor of 30 mm in diameter and 200 mm in length with “simulated” NG of different composition under thermal-neutral conditions and fed with different molar air to fuel ratio (A/FA/F) and molar water to fuel ratio (W/F)(W/F). The results showed that reforming performance is significantly dependent on A/FA/F, W/FW/F and concentration of C2+C2+ hydrocarbons in inlet fuel. Fuels containing higher C2+C2+ hydrocarbons concentration have optimum performance in terms of more H2H2 at higher A/FA/F and W/FW/F but lower conversion efficiency. Good performance for ATR of fuel containing 15%–20% C2H6C2H6 can be achieved at A/F=5–7A/F=57 and W/F=4–6W/F=46, much higher than that for optimum performance of ATR of methane (A/F=3,W/F=2–2.5A/F=3,W/F=22.5). CO2CO2 in the inlet fuel does not have significant effect on the reversed water–gas shift reaction. Its effect on reforming performance is mainly due to the dilution of inlet fuel and products.  相似文献   

8.
In recent years the catalytic partial oxidation has been taken into consideration as a suitable process for hydrogen production, because of its exothermic nature which makes the process less energy and capital cost intensive with respect to steam reforming. In this paper the behaviour of three different catalyst typologies, two based on Ni–Al2O3Al2O3 (different in active phase composition) and one constituted by Pt supported on CeO2CeO2, is studied for partial oxidation of propane (as representative of liquefied petroleum gas). For comparison the same catalysts have been tested also in methane partial oxidation.  相似文献   

9.
10.
11.
12.
Possibility of hydrogen production from biogas using hot slag has been studied, in which decomposition rate of CO2CO2CH4CH4 in a packed bed of granulated slag was measured at constant flow-rate and pressure. The molten slag, discharged at high temperature over 1700 K from smelting industries such as steelmaking or municipal waste incineration. It has enough potential for replacing energy required for hydrogen production due to the catalytic steam reforming or carbon decomposition of hydrocarbon. However, heat recovery of hot slag has never been established. Therefore, the objective of this work is to generate hydrogen from methane using heated slag particles as catalyst, in which the effect of temperature on the hydrogen generation was mainly investigated at range from 973 to 1273 K. In the experiments a mixed gas of CH4CH4 and CO2CO2 was continuously introduced into the packed bed of hot slag at constant flow-rate and atmospheric pressure and then the outlet gas was monitored by gas chromatography. The results indicate that slag acted as not only thermal media but also good catalyst, for promoting decomposition. The product gases were mainly hydrogen and carbon monoxide with/without solid carbon deposition on the surface of slag, depending on the reaction temperature. Increasing temperature led to large hydrogen generation with decreasing un-reacted methane in the outlet gas, at when the largest methane conversion was about 96%. The results suggested a new energy-saving process of hydrogen production, in which the waste heat from molten slag can replace the energy required for hydrogen production, reducing carbon dioxide emission.  相似文献   

13.
14.
15.
Experiments on synthesis gas preparation from dry reforming of methane by carbon dioxide with thermal plasma only and cooperation of thermal plasma with commercial catalysts have been performed. In all experiments, nitrogen gas was used as the plasma gas to form a high-temperature jet injected into a tube reactor. A mixture of CH4CH4 and CO2CO2 was fed vertically into the jet. Both kinds of experiments were conducted in the same conditions, such as total flux of feed gases, the molar ratio of CH4/CO2CH4/CO2, and the plasma power except with or without catalysts in the tube reactor. Higher conversion of CH4CH4 and CO2CO2, higher selectivity of H2H2 and CO, and higher specific energy of the process were achieved by thermal plasma with catalysts. For example, the conversions of CH4CH4 and CO2CO2 were high to 96.33% and 84.63%, and the selectivies of CO and H2H2 were also high to 91.99% and 74.23%, respectively. Both were 10–20%1020% higher than those by thermal plasma only.  相似文献   

16.
17.
Sodium borohydride is attracting considerable interests as a hydrogen storage medium. In this paper, we investigated the effects of hydrogen pressure, reaction temperature and transition metal addition on sodium borohydride synthesis by the reaction of sodium meta-borate with Mg and H2H2. It was found that higher H2H2 pressure was beneficial to NaBH4NaBH4 formation. The increase in reaction temperature first improved NaBH4NaBH4 formation kinetics but then impeded it when the temperature was raised to near the melting point of Mg. It was also found that some additions of transition metals such as Ni, Fe and Co in the NaBO2+Mg+H2NaBO2+Mg+H2 system promoted the NaBH4NaBH4 formation, but Cu addition showed little effect. The activation energy of the NaBH4NaBH4 formation from Mg, NaBO2NaBO2 and H2H2 was estimated to be 156.3 kJ/mol NaBH4NaBH4 according to Ozawa analysis method.  相似文献   

18.
In this simulation study, methanol steam reforming reaction to produce synthesis gas has been studied in a membrane reactor when shell side and lumen side streams are in co-current mode or in counter-current mode. The simulation results for both co-current and counter-current modes are presented in terms of methanol conversion and molar fraction versus temperature, pressure, H2O/CH3OHH2O/CH3OH molar feed flow rate ratio and axial co-ordinate.  相似文献   

19.
A two-side platelet microreactor was designed, modeled, and tested for the generation of hydrogen from ethanol under autothermal regime. The microchannels of one side of the platelet microreactor were coated with Co/ZnO catalyst for conducting the ethanol steam reforming reaction for producing hydrogen at low temperature, whereas the microchannels of the other side of the platelet were coated with CuMnOxCuMnOx catalyst for the complete oxidation of ethanol. The heat released during ethanol combustion was used for maintaining the heat demand for the endothermic steam reforming side of the microreactor. Several preparation methods were used and compared for the deposition of catalysts in the microchannels in order to guarantee homogeneous deposition and stability. An amount of 3.67 mol of hydrogen per mol of total ethanol consumed in both sides of the microreactor was obtained at 733 K. The overall efficiency of the microreactor was 71%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号