首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural fiber composites have been prepared by grafting hydrophobic monomer methyl methacrylate (MMA) onto chemically modified rice straw (RS) using complex initiating system [CuSO4/glycine/ammonium persulfate (APS)] in an aqueous medium with and without the additive, sodium silicate (SS). The chemically modified RS, RS‐g‐PMMA, and RS‐g‐PMMA/SS composite have been characterized by FT‐IR, and their morphology was studied by scanning electron microscopy (SEM). The thermal behavior and tensile properties of the samples have been studied, and the flame retardant properties have also been evaluated by limiting oxygen index (LOI) test and cone calorimetry. The biodegradation and water absorbency have been carried out for its ecofriendly nature and better commercialization. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMA) (designated iPMMA, aPMMA, and sPMMA) with approximately the same molecular weight were mixed separately with poly(vinyl pyrrolidone) (PVP) primarily in chloroform to make three polymer blend systems. Differential scanning calorimetry (DSC) was used to study the miscibility of these blends. The results showed that the tacticity of PMMA has a definite impact on its miscibility with PVP. The aPMMA/PVP and sPMMA/PVP blends were found to be miscible because all the prepared films showed composition-dependent glass-transition temperatures (Tg). The glass-transition temperatures of the aPMMA/PVP blends are equal to or lower than weight average and can be qualitatively described by the Gordon–Taylor equation. The glass-transition temperatures of the other miscible blends (i.e., sPMMA/PVP blends) are mostly higher than weight average and can be approximately fitted by the simplified Kwei equation. The iPMMA/PVP blends were found to be immiscible or partially miscible based on the observation of two glass-transition temperatures. The immiscibility is probably attributable to a stronger interaction among isotactic MMA segments because its ordination and molecular packing contribute to form a rigid domain. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3190–3197, 2001  相似文献   

3.
Poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blends were prepared by casting from either chloroform or benzene solvents. After casting from solvents, all samples used in this study were preheated to 100°C and held for 10 min. Then, the solvent effect on the crystallization behavior and thermodynamic properties were studied by differential scanning calorimeter (DSC). Also, the morphology of spherulite of casting film was studied by polarized optical microscope. From the DSC and polarizing optical microscopy (POM) results, it was found that PEO/PMMA was miscible in the molten state no matter which casting solvent was used. However, the crystallization of PEO in the chloroform‐cast blend was more easily suppressed than it was in the benzene‐cast blend. Relatively, the chloroform‐cast blend showed the greater melting‐point depressing of PEO crystals. Also, the spherulite of chloroform‐cast film showed a coarser birefringence. It was supposed that the chloroform‐cast blend had more homogeneous morphology. It is fair to say that polymer blends, cast from solvent, are not necessarily in equilibrium. However, the benzene‐cast blends still were not in equilibrium even after preheating at 100°C for 10 min. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1627–1636, 2000  相似文献   

4.
In this work, the solvent effect on the miscibility between poly(vinyl chloride) (PVC) and poly(methyl methacrylate) (PMMA) in ternary polymer solutions was examined by the viscometric method. In these systems, we could understand that the used solvents, tetrahydrofuran (THF) or N,N‐dimethylformamide (DMF), mainly affect the interaction between PVC and PMMA, while prompting various miscible properties. In PVC/PMMA/THF solution, THF is a near θ‐solvent and a poor solvent for PVC and PMMA, respectively. The mixing of the tighter PMMA coils and more extended PVC coils in THF may cause the sea–island heterogeneous structure below the weight fraction of PMMA in the polymer mixture wPMMA = 0.7, resulting in immiscible PVC/PMMA mixtures. At wPMMA ≥ 0.7, the PVC/PMMA mixtures are relatively miscible, giving homogeneous polymer solutions. It means that the miscibility between PVC and PMMA depends on the composition of polymer mixture. However, due to the similar affinity of DMF to PVC and PMMA, PVC/PMMA/DMF solutions exhibit high miscibility between PVC and PMMA at about wPMMA = 0.5. © 2000 Society of Chemical Industry  相似文献   

5.
Well-defined poly(methyl methacrylate)-silica nanocomposites were produced by “grafting through” using reversible addition-fragmentation chain transfer (RAFT) polymerization. The surface of silica nanoparticle was modified covalently by attaching methacryl group to the surface using 3-methacryloxypropyldimethylchlorosilane. Polymerization of methyl methacrylate (MMA) using the 4-cyano-4-(dodecylsulfanylthiocarbonyl)sulfanyl pentanoic acid RAFT agent, produced the PMMA-SiO2 nanocomposites. Characterization of these well-defined nanocomposites included FT-IR, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), transmission electron microscopy (TEM) and dynamic mechanical analysis. These results show that the Tg values are higher and the mechanical strength of the PMMA-SiO2 nanocomposites is slightly improved when compared to bulk PMMA. Further, the molecular weight of the PMMA (up to Mn = 100,000) is controlled and the SiO2 are well dispersed in the PMMA matrix.  相似文献   

6.
The results of the miscibility between the chemically similar polymers poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) published so far show inconsistent statements concerning miscibility. The problems may be due to differences in molecular weights, tacticity, and preparation methods of the polymers. This investigation was carried out by using either chloroform or tetrahydrofuran (THF) as solvent to prepare the blends, because to our knowledge, nobody has reported any tacticity effect of PMMA on the miscibility with PVAc. Therefore, in this article, different tactic PMMAs were used to mix with PVAc and their miscibility was studied calorimetrically. The results showed little effect of solvent and tacticity. PMMA and PVAc were determined to be almost completely immiscible because of the observation of two Tg's. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 35–39, 2004  相似文献   

7.
Blends of atactic or syndiotactic poly(methyl methacrylate) (designated as aPMMA or sPMMA) and poly(bisphenol A carbonate) (PC) were prepared from solution casting. Tetrahydrofuran (THF) and chloroform were used as solvent. Experimental results indicated that the as‐cast blends from THF were quite different from the chloroform‐cast ones. After film preparation, THF‐cast blends did not show any visible phase separation. However, chloroform‐cast blends formed a phase‐separated structure. The as‐cast PC from either solvent was not completely amorphous, and had a melting point at 239–242°C, indicating a certain degree of crystallinity. In contrast, the quenched samples of aPMMA/PC blends prepared from the two solvents behaved virtually the same. They both showed aPMMA dissolves better in PC, but PC solubility in aPMMA is very little. Using sPMMA instead of aPMMA to blend with PC, different results were obtained. The quenched sPMMA/PC blends cast from THF showed only one Tg. However, immiscibility (i.e., two Tgs) was found in the same blend system when cast from chloroform. THF was believed to cause the observation of single Tg due to the following kinetic reason. sPMMA and PC were still trapped together even after THF removal in a homogeneous, but nonequilibrium state below the glass transition. Therefore, the quenched sPMMA/PC blends were not truly thermodynamically miscible. From the results of aPMMA or sPMMA with PC, increasing syndiotacticity seemed to improve the miscibility between PMMA and PC. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2842–2850, 2001  相似文献   

8.
H. Münstedt  T. Köppl  C. Triebel 《Polymer》2010,51(1):185-8313
In this paper it is shown that elastic properties of a poly(methyl methacrylate) melt in the linear range of deformation are more significantly influenced by the addition of silica nanoparticles than viscous ones. The effect is the strongest in the steady-state which is reached at several thousand seconds. That is the reason why the often used dynamic-mechanical experiments are not a very suitable method for investigations of that kind. Therefore, creep and creep-recovery tests were applied for the characterisation of the filled materials. The linear steady-state recoverable compliances following from the recovery experiments increase by a factor of 6 at the highest measured volume content of 2.1%. This finding is explained by the existence of long retardation times in the filled materials resulting from interactions between the fillers and matrix molecules attached to their surfaces which reduce their molecular mobility. Retardation spectra calculated from the recovery curves quantify these assumptions. The model is supported by the experimental finding that the recoverable compliance becomes smaller above a certain stress applied and approaches that of the matrix as such a behaviour could be explained by a detachment of the molecules from the particle surface. The paper demonstrates that investigations of elastic properties of nanoparticle filled polymers in the molten state at long experimental times are a very sensitive tool to get an insight into interactions between particles and macromolecules of such systems.  相似文献   

9.
This study examines the influence of three different minerals, that is, clay, calcium carbonate, and quartz on the physical, thermal, and mechanical properties of poly(lactic acid) (PLA)/poly(methyl methacrylate) blend. Rheological behavior and phase structure were initially studied by small-amplitude oscillatory shear rheology. Clay- and quartz-filled materials presented an increase in viscosity at low frequency associated with the presence of a yield stress. However, this behavior was not observed for calcium carbonate filled materials due to a matrix degradation effect. To elucidate this aspect, thermal stability and thermal properties were examined by thermogravimetric analysis and differential scanning calorimetry, showing that calcium carbonate promotes degradation of the PLA phase. No nucleating effect was observed in the presence of the minerals. Dynamical mechanical analysis and mechanical characterization revealed an increase of the overall softening temperature and, a reinforcing effect for clay- and quartz-based composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46927.  相似文献   

10.
悬浮聚合法制取不同分子量级别的聚甲基丙烯酸甲酯   总被引:2,自引:0,他引:2  
祝爱兰  钟宏 《应用化工》2001,30(5):21-23
采用粉状MgCO3 作为分散剂 ,悬浮聚合制取了分子量从 2 4× 10 4 ~ 2 5 4× 10 4 的聚甲基丙烯酸甲酯。考察了温度、引发剂种类和浓度、分子量调节剂、转化率对聚合物分子量的影响规律 ,用粘度法测量了聚合物聚甲基丙烯酸甲酯 (PMMA)的分子量。结果表明 :温度的升高、引发剂浓度的增大、分子量调节剂的加入都会导致分子量的减小 ,随着转化率的提高 ,聚合物的分子量增大。在同等条件下 ,引发剂过氧化苯甲酰 (BPO)聚合所得的分子量较偶氮二异丁腈 (AIBN)高。通过实验 ,得到了满足作者需求的分子量 (96× 10 4 ~ 10 0× 10 4 )的聚合物的聚合条件为 :分散剂MgCO3 用量 1% ,单体∶水相 =1∶2 5 (质量比 ) ,引发剂BPO浓度 0 5 % ,反应温度 70℃ ,反应时间 3h。  相似文献   

11.
The phase behaviour of blends of a liquid-crystalline polymer (LCP) and poly(methyl methacrylate) (PMMA), as well as the phase state of blends of PMMA and poly(vinyl acetate) (PVA) has been investigated using light scattering and phase-contrast optical microscopy. The blends of LCP and PMMA have been obtained by coagulation from ternary solutions. The cloud point curves were determined. It was established that both pairs demix upon heating, ie have an LCST. In the region of intermediate composition, the phase separation proceeds according to a spinodal mechanism; however for LCP/PMMA blends, the decomposition proceeds according to a non-linear regime from the very onset. In the region of small amounts of LCP, the phase separation follows a mechanism of nucleation and growth. For PMMA/PVA blends, the spinodal decomposition proceeds according to a linear regime, in spite of the molecular mobility that PVA chains develop at lower temperatures. Only after prolonged heat treatment does the process transit to a non-linear regime. The data show a similarity between the phase behaviour of blends of liquid-crystalline and of flexible amorphous polymers. The distinction consists of the absence of a linear regime of decomposition for LCP-PMMA blends. © 1999 Society of Chemical Industry  相似文献   

12.
PMMA/MMT nanocomposites were successfully synthesized via in situ intercalative polymerization, and characterized by means of wide‐angle X‐ray diffractometry, transmission electron microscopy, thermal gravimetric analysis, dynamic mechanical analysis and Fourier‐transform infrared analysis. The nanocomposites possess partially exfoliated and partially intercalated structure, in which the silicate layers are exfoliated into nanometre secondary particles with thickness of less than 20 nm and uniformly dispersed in the polymer matrix. In comparison with pure PMMA, the thermal stability, glass transition temperature, and mechanical properties of the polymer are notably improved by the presence of the nanometric silicate layers. It was found that part of the PMMA chains in the nanocomposites are well immobilized inside and/or onto the layered silicates and, therefore, the unique properties of the nanocomposites result from the strong interactions between the nanometric silicate layers and the polymer chains. Copyright © 2003 Society of Chemical Industry  相似文献   

13.
由种子乳液聚合法制备了聚苯乙烯-聚甲基丙烯酸甲酯核-壳粒子。以过硫酸钾(KPS)为引发剂,辛基酚聚氧乙烯醚(OP-10)为乳化剂,合成了聚苯乙烯(PS)种子核;连续滴加甲基丙烯酸甲酯(MMA),在核表面富集MMA,制备了粒径范围在0.16~0.67μm的核-壳粒子;当单体苯乙烯与甲基丙烯酸甲酯(St/MMA)的比为30∶70(质量比)时,所得粒径在0.18μm,粒径分布为0.012。差示扫描量热(DSC)研究显示,复合粒子的玻璃化转变温度(Tg)为97.2℃,峰形单一,表现出良好的热性能。  相似文献   

14.
Ultrasonic degradation of poly(methyl methacrylate) (PMMA) was carried out in several solvents and some mixtures of solvents. The time evolution of molecular weight distribution (MWD), determined by gel permeation chromatography, is analysed by continuous distribution kinetics. The rate coefficients for polymer degradation are determined for each solvent. The variation of rate coefficients is correlated with the vapour pressure of the solvent, kinematic viscosity of the solution and solvent–polymer interaction parameters. The vapour pressure and the kinematic viscosity of the solution are found to be more critical than other parameters (such as the Huggins and Flory–Huggins constants) in determining the degradation rates. © 2001 Society of Chemical Industry  相似文献   

15.
含规整 PMMA支链的 PBA合成及其力学性能   总被引:1,自引:0,他引:1  
研究了聚甲基丙烯酸甲酯大单体与丙烯酸丁酯在苯中的共聚,该大单体由甲基丙烯酸甲酯在巯基乙酸链转移剂存在下聚合,用甲基烯酸缩不甘油酯封端,研究了共聚速率、大单体相对分子质量、大单体与小单体投料比、引发剂用量、单体浓度及共聚温度对接枝效率及共聚物相对分子质量的影响。用分级沉淀法精制共聚物。用凝胶渗透色谱法、红外光谱法及差示扫描量热法对共聚物进行表征,用蒸汽压式渗透压力计及膜渗透压测定了结构参数,结果表明,平均接枝数随转化率增加而降低,在一定的组成范围内,共聚物呈热塑性弹性体行为。  相似文献   

16.
C. Triebel 《Polymer》2011,52(7):1596-3626
Creep-recovery experiments up to the steady state were performed on neat poly (methyl methacrylate) and on composites filled with 2.1 vol.% silica nanoparticles in order to get information on the long retardation times that occur due to polymer-particle interactions. The temperature dependence of the elasticity was investigated, varying the temperatures between 170 °C and 200 °C. For the neat polymer it was found that it behaves thermorheologically simple, whereas the composite exhibits a thermorheological complexity. An interpretation of these findings can be given, if the corresponding retardation spectra are regarded. The interactions between the polymer molecules and the particle surface is reflected by a particular maximum at longer retardation times, which exhibits a different temperature dependence compared to the spectra of the unfilled polymer matrix. This thermorheological complex behaviour is not seen in the usual dynamic-mechanical measurements down to angular frequencies of ω = 10−2 s−1. If the frequency range of the dynamic moduli is extended, however, by making use of the retardation spectra, a thermorheological complexity can be found, too. These results demonstrate that appropriate experimental time windows have to be applied to obtain a comprehensive picture of the rheological behaviour of nano particle-filled polymer melts.  相似文献   

17.
Poly(methyl methacrylate) doped with the photoinitiators benzil and benzildimethylketal is dissolved in the monomer MMA. From the solutions, planar waveguides and optically-recorded strip waveguides are fabricated on quartz substrates. Mode spectra and total losses are investigated and indicate a minimum loss value of about 0.015 dB mm?1 for photoinitiator concentrations of about 10%. The results also point to a considerable influence of surface irregularities.  相似文献   

18.
The crystallization kinetics of binary blends of poly(ethylene oxide) and poly(methyl methacrylate) were investigated. The isothermal spherulitic growth rates were measured by means of a polarized light microscope. The temperature and composition dependence on the growth rates have been analysed. The temperature range studied was from 44° to 58°C. The introduction of poly(methyl methacrylate) into poly(ethylene oxide) resulted in a reduction of the spherulitic growth rate as the proportion of poly(methyl methacrylate) was increased from zero to 40% by weight. Results have been analysed using the theoretical equations of Boon and Azcue for the growth rate of polymer-diluent mixtures. The experimental results are in good agreement with this equation. The temperature coefficient is negative as is the case in the crystallization of bulk homopolymers.  相似文献   

19.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMAs) (designated as iPMMA, aPMMA, and sPMMA) with approximately the same molecular weight were mixed separately with poly(styrene‐co‐acrylonitrile) (abbreviated as PSAN) containing 25 wt % of acrylonitrile in tetrahydrofuran to make three polymer blend systems. Differential scanning calorimetry (DSC) was used to study the miscibility of these blends. The results showed that the tacticity of PMMA has a definite impact on its miscibility with PSAN. The aPMMA/PSAN and sPMMA/PSAN blends were found to be miscible because all the prepared films were transparent and showed composition dependent glass transition temperatures (Tgs). The glass transition temperatures of the two miscible blends were fitted well by the Fox equation, and no broadening of the glass transition regions was observed. The iPMMA/PSAN blends were found to be immiscible, because most of the cast films were translucent and had two glass transition temperatures. Through the use of a simple binary interaction model, the following comments can be drawn. The isotactic MMA segments seemed to interact differently with styrene and with acrylonitrile segments from atactic or syndiotactic MMA segments. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2894–2899, 1999  相似文献   

20.
Polymer blends composed of poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) were prepared via radical-initiated polymerization of methyl methacrylate (MMA) in the presence of PVAc. Differential scanning calorimetry and dynamic mechanical analysis were employed to investigate the miscibility and phase behavior of the blends. The PMMA/PVAc blends of in situ polymerization were found to be phase separated and exhibited a two-phase structure, although some chain transferring reaction between the components occurred. The phase separation resulted from the solvent effect of MMA during the in situ polymerization, which was confirmed by the investigation of phase behavior based on solution cast blending. Solubility analysis of the polymerized blends indicated that some chain transferring reaction between the components occurred during the polymerization. An abrupt increase in gel content from 21.2 to 72.4 wt % was observed when the inclusion of PVAc increased from 30 to 40 wt %, and the gel component consisted of the component polymers as shown by infrared spectroscopy studies. The thermogravimetric analysis study indicated that the inclusion of a small amount of PVAc gives rise to a marked stabilization effect on the thermal stability. The PMMA/PVAc blends exhibited increased notched impact properties with the inclusion of 5 wt % PVAc. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 675–684, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号