首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interest in superconducting electronics working at millikelvin temperatures has increased during the past few years, and several novel devices and amplifiers utilizing mesoscopic Josephson junctions have been developed. We review the present status of a few of these devices, foremost the inductively-read superconducting Cooper pair transistor and the Bloch oscillating transistor. As a comparison, we review the status of dc SQUID devices which provide the traditional amplifier choice when approaching the standard quantum limit in ultra-sensitive measurements. In addition, we discuss a new type of current pump, the Sluice, in which modulation of Josephson energy is employed to produce large currents at high accuracy. These new developments continue the flourishing “Otaniemi tradition” in ultra-low-temperature physics and SQUID magnetometry for which Academician Olli V. Lounasmaa acted as the primus motor over three decades.  相似文献   

2.
We propose a scheme to implement the optimal 1 → 3 economical phase-covariant quantum cloning with superconducting quantum interference devices (SQUIDs) in a cavity. During the process, no transfer of quantum information between the SQUIDs and cavity is required. The cavity field is only virtually excited. The scheme is insensitive to cavity decay. Therefore, the scheme can be experimentally realized in the range of current cavity QED techniques.  相似文献   

3.
A review of U.S. Navy efforts in superconducting technology is given. Programs include development of superconducting magnets for motors in ship propulsion systems and to generate magnetic moments in mine sweeping systems. A program to develop superconducting quantum interference devices (SQUIDs) for detection of mines and buried ordnance has successfully been demonstrated. In electronic applications, superconducting filters, resonators, and antennae are being developed for radar, communication, and space systems. Concurrent with these superconductivity programs are efforts to improve the efficiency, reliability, and affordability of refrigeration systems.  相似文献   

4.
Two classes of superconducting devices have been proposed as quantum bits (qubits) for realizing quantum logic operations. The flux qubits based on a superconducting quantum interference device (SQUID) appear to be particularly promising owing to the macroscopic nature of the qubit and potential integration with high-speed control circuitry in the form of rapid single-flux quantum electronics. Recent progress is discussed and near-term challenges mentioned. The radio frequency SQUID-based qubit offers a prospect for a reliably manufacturable scalable approach.  相似文献   

5.
We describe here the first experimental realization of a heat interferometer, thermal counterpart of the well-known superconducting quantum interference device. These findings demonstrate, in the first place, the existence of phase-dependent heat transport in Josephson-based superconducting circuits and, in the second place, open the way to novel ways of mastering heat at the nanoscale. Combining the use of external magnetic fields for phase biasing and different Josephson junction architectures we show here that a number of heat interference patterns can be obtained. The experimental realization of these architectures, besides being relevant from a fundamental physics point of view, might find important technological application as building blocks of phase-coherent quantum thermal circuits. In particular, the performance of two different heat rectifying devices is analyzed.  相似文献   

6.
R.E. Sarwinski 《低温学》1977,17(12):671-679
Instruments utilizing superconducting quantum interference devices (SQUIDS) operating at liquid helium temperature offer the greatest available sensitivity for many different electromagnetic measurements. Their equivalent noise temperature of less than one mK and low drift allow low level measurements of ac and dc current, voltage and resistance. We describe SQUID arrays to measure small vector magnetic fields and spacial gradients associated with geophysical and biomedical phenomena and present information on the design, advantages and limitations of these systems.  相似文献   

7.
The following topics are dealt with: superconducting electronics; superconducting quantum interference devices (SQUIDs); magnetometers; Josephson device memories; thin-film superconducting materials; tunnel junctions; Josephson device logic circuits; high-Tc (critical temperature) superconductors; YBaCuO superconductors: ceramic superconductor memories; millimeter-wave detectors; Josephson device mixers; superconducting transmission-line structure; superconducting microwave cavities; tunnel spectroscopy; laser-induced switching of superconductors; gradiometers; harmonic mixing; SIS (superconductor-insulator-superconductor) mixers; superconducting bolometers; superconductor device fabrication; SSC; (Superconductor Super Collider); magnets; superconducting magnets; chaos in Josephson junction systems; superconducting coils; superconducting material preparation; MHD; (magnetohydrodynamics) magnets; magnetic resonance imaging (MRI) magnets; and niobium materials devices  相似文献   

8.
‘QVD’ detectors are based on thermoelectric heat-to-voltage (Q→V) conversion and digital (V→D) readout. In theory, they are competitive with superconducting tunnel junction detectors and transition edge sensor devices. We analyze the performance of the QVD detectors with different design architectures. It is concluded that the detectors with lanthanum–cerium hexaboride sensors can be very fast: up to 100 MHz counting rates for UV photons. In addition to traditional astrophysical applications, these detectors can be applied to the tasks of quantum computing and communication.  相似文献   

9.
Microwave Kinetic Inductance Detectors (MKIDs) are superconducting detectors that sense the change in the surface impedance of a thin superconducting film when Cooper Pairs are broken by using a high quality factor resonant circuit. We are developing strip detectors that have aluminum MKID sensors on both ends of a rectangular tantalum strip. These devices can provide one dimensional spatial imaging with high quantum efficiency, energy resolution, and microsecond time resolution for single photons from the IR to the X-ray. We have demonstrated X-ray strip detectors with an energy resolution of 62 eV at 6 keV, and hope to improve this substantially. We will also report on our progress towards optical arrays for a planned camera for the Palomar 200″ telescope.  相似文献   

10.
Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal plane code-division multiplexers can be combined with multi-GHz readout based on superconducting microresonators to scale to even larger arrays.  相似文献   

11.
A superconducting hard gap in hybrid superconductor–semiconductor devices has been found to be necessary to access topological superconductivity that hosts Majorana modes (non‐Abelian excitation). This requires the formation of homogeneous and barrier‐free interfaces between the superconductor and semiconductor. Here, a new platform is reported for topological superconductivity based on hybrid Nb–In0.75Ga0.25As‐quantum‐well–Nb that results in hard superconducting gap detection in symmetric, planar, and ballistic Josephson junctions. It is shown that with careful etching, sputtered Nb films can make high‐quality and transparent contacts to the In0.75Ga0.25As quantum well, and the differential resistance and critical current measurements of these devices are discussed as a function of temperature and magnetic field. It is demonstrated that proximity‐induced superconductivity in the In0.75Ga0.25As‐quantum‐well 2D electron gas results in the detection of a hard gap in four out of seven junctions on a chip with critical current values of up to 0.2 µA and transmission probabilities of >0.96. The results, together with the large g ‐factor and Rashba spin–orbit coupling in In0.75Ga0.25As quantum wells, which indeed can be tuned by the indium composition, suggest that the Nb–In0.75Ga0.25As–Nb system can be an excellent candidate to achieve topological phase and to realize hybrid topological superconducting devices.  相似文献   

12.
As metrology extends toward the nanoscale, a number of potential applications and new challenges arise. By combining photolithography with focused ion beam and/or electron beam methods, superconducting quantum interference devices (SQUIDs) with loop dimensions down to 200 nm and superconducting bridge dimensions of the order 80 nm have been produced. These SQUIDs have a range of potential applications. As an illustration, we describe a method for characterizing the effective area and the magnetic penetration depth of a structured superconducting thin film in the extreme limit, where the superconducting penetration depth A is much greater than the film thickness and is comparable with the lateral dimensions of the device  相似文献   

13.
Advances in experimental techniques, such as magneto-optical imaging, have influenced the way modelling studies are to be approached. In particular, these studies should be coupled with the fundamental understanding of flux lattices, vortex motion, melting and pinning, obtained from phenomenological theories and via various measurement techniques, such as Hall probe arrays, scanning superconducting quantum interference devices and by Lorentz microscopy. There are a range of models and questions to be addressed such as those concerning critical current density in relation to thin films. The ultimate goal is to obtain a cohesive picture of the properties of high TC superconductors that will be useful from the standpoint of superconducting technology.  相似文献   

14.
Among the physical realizations of the elements required for quantum computation nano-scale electronic devices [2, 10, 12, 16] are very promising. They can be easily integrated into electronic circuits and scaled up to large numbers of qubits. Here we describe qubits based on low-capacitance Josephson junctions. In these systems Coulomb blockade effects allow the control of the charge on a superconducting island. They constitute quantum bits, with logical states differing by the charge on one island. Single- and two-bit operations can be performed by manipulating applied gate voltages. The phase coherence time is sufficiently long to allow a series of these steps. In addition to the manipulation of qubits, the resulting quantum state can be read out by coupling a single-electron transistor capacitively to the qubit. Received: October 23, 1998; revised version: September 21, 1999  相似文献   

15.
Many fields of physics, and of science and technology in general, have radically changed over the past two decades due to the development of macroscopic quantum devices: lasers, masers, quantum frequency standards, and, of course, superconducting quantum interference detectors-SQUIDs. The SQUIDs today are the most sensitive and simple devices for registration of weak magnetic fields and electric and nonelectric quantities transformed into magnetic flux. There have naturally been many reviews and articles on SQUID operation and applications [1–3]. In this paper we will not touch on the well-known problems and will focus our attention mainly on high-temperature SQUIDs based on the results obtained at the JINR, Dubna.  相似文献   

16.
Abstract

We consider quantum dynamics of a parametrically driven anharmonic oscillator (PDAO) at a few-photon level. In this scheme the oscillatory mode is excited through the degenerate down-conversion process. This scheme could be experimentally realized in superconducting solid-state devices based on the nonlinearity of the Josephson junction or in cooled nano-mechanical oscillators. We investigate PDAO in the strong quantum regime that means strong Kerr-nonlinearity of the mode with respect to the mode’s dissipation for two cases of excitations: by a monochromatic driving field or by a train of Gaussian pulses. We demonstrate production of the nonclassical oscillatory states with two-fold symmetry in phase-space which are approximately close to the lower pure Fock states. Production of the superposition of the Fock states for time-intervals exceeding the characteristic time of decoherence and dissipation is also shown.  相似文献   

17.
We demonstrate a technique for creating high quality, large area tunnel junction barriers for normal–insulating–superconducting or superconducting–insulating–superconducting tunnel junctions. We use atomic layer deposition and an aluminum wetting layer to form a nanometer scale insulating barrier on gold films. Electronic transport measurements confirm that single-particle electron tunneling is the dominant transport mechanism, and the measured current–voltage curves demonstrate the viability of using these devices as self-calibrated, low temperature thermometers with a wide range of tunable parameters. This work represents a promising first step for superconducting technologies with deposited tunnel junction barriers. The potential for fabricating high performance junction refrigerators is also highlighted.  相似文献   

18.
The multiplexing scheme presented in this paper is part of the readout chain of the QUBIC instrument devoted to cosmic microwave background polarization observations. It is based on time domain multiplexing using superconducting quantum interference devices (SQUIDs) to read out a large array of superconducting bolometers. The originality of the multiplexer presented here lies in the use of capacitors for the SQUID addressing. Capacitive coupling allows us to bias many SQUIDs in parallel (in a 2D topology), with low crosstalk and low power dissipation of the cryogenic front-end readout. However, capacitors in series with the SQUID require a modification of the addressing strategy. This paper presents a bias reversal technique adopted to sequentially address the SQUIDs through capacitors using a cryogenic SiGe integrated circuit. We further present the different limitations of this technique and how to choose the proper capacitance for a given multiplexing frequency and current source compliance.  相似文献   

19.
A novel Josephson complementary ternary logic (JCTL) circuit is described. This fundamental circuit is based on the combination of two SQUIDs (superconducting quantum interference devices), one of which is switched in the positive direction and the other in the negative direction. The JCTL can perform the fundamental operations of AND, OR, NOT, and Double NOT in ternary form. The principle of the operation and design criteria are described in detail. Simulation results show that reliable operation of these circuits can be achieved with a high performance  相似文献   

20.
With the rapid development of quantum theory and technology in recent years, especially the emergence of some quantum cloud computing platforms, more and more researchers are not satisfied with the theoretical derivation and simulation verification of quantum computation (especially quantum algorithms), experimental verification on real quantum devices has become a new trend. In this paper, three representative quantum algorithms, namely Deutsch-Jozsa, Grover, and Shor algorithms, are briefly depicted, and then their implementation circuits are presented, respectively. We program these circuits on python with QISKit to connect the remote real quantum devices (i.e., ibmqx4, ibmqx5) on IBM Q to verify these algorithms. The experimental results not only show the feasibility of these algorithms, but also serve to evaluate the functionality of these devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号