首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The main results of a feasibility study of a combined cycle electricity generation plant, driven by highly concentrated solar energy and high-temperature central receiver technology, are presented. New developments in solar tower optics, high-performance air receivers and solar-to-gas turbine interface, were incorporated into a new solar power plant concept. The new design features 100% solar operation at design point, and hybrid (solar and fuel) operation for maximum dispatchability. Software tools were developed to simulate the new system configuration, evaluate its performance and cost, and optimize its design. System evaluation and optimization were carried out for two power levels. The results show that the new system design has cost and performance advantages over other solar thermal concepts, and can be competitive against conventional fuel power plants in certain markets even without government subsidies.  相似文献   

2.
This paper presents a new concept of hybrid cooling, named solar enhanced natural draft dry cooling tower (SENDDCT), in which solar collectors are added to traditional natural draft dry cooling towers to increase their performance. The purpose of using solar energy in this new cooling system is to increase the suction through the tower so that more air flow is achieved through the compact heat exchangers that cool condensers of a geothermal power plant. For the same size of the cooling tower, more air flow across the heat exchangers means more heat can be rejected by the system. The governing equations for the SENDDCT are similar to those of a conventional natural draft dry cooling tower except that solar heating is added after the heat exchanger bundles. Performance comparisons show that SENDDCT has substantial advantages over conventional natural draft dry cooling towers for geothermal power plants as well as standalone solar chimney power plants.  相似文献   

3.
太阳能热风发电系统的性能分析及研究方法   总被引:1,自引:0,他引:1  
阐述了太阳能热风发电系统的研究进展.对影响该系统性能的主要因素———集热棚、空气涡轮机及烟囱的特性进行了分析,并根据这些影响因素探讨了太阳能热风发电系统的研究方法及关键问题.给出了部分研究结果,说明对太阳能热风发电系统的研究还需深入,提出应加快商用电站的建设.并指出:在发展太阳能热风发电系统时,应综合考虑荒漠治理、农作物种植及海水淡化处理等.  相似文献   

4.
提出了一种基于太阳能热气球的发电方法,阐述了发电系统的结构和工作原理,分析了热气球往复运动的热动力学特征和热气球运动的控制策略,并对系统的发电效率进行了粗略估算。研究表明,热效率可达2%,输出功率取决于热气球运动速度及所受合外力的大小。高空风是影响系统运行的重要因素。夜间与其它热源配合即可实现昼夜连续运行。为太阳能的利用提供了新的思路。  相似文献   

5.
吕子奎  房方 《太阳能学报》2022,43(6):132-137
塔式太阳能热发电空气吸热器的最大热应力与其温度变化率成正比,吸热器出口空气温度的动态特性影响塔式光热系统的功率特性。结合热电比拟理论,采用对流换热系数和Rosseland辐射传递方程描述传热过程,建立塔式太阳能热发电系统中碳化硅泡沫陶瓷吸热体的能量流模型。通过剖析空气吸热器工作过程的传热特性,得出平均能流密度、吸热体厚度、平均孔径对出口空气温度、吸热体温度的影响,为该类空气吸热器的设计提供了理论依据。  相似文献   

6.
The solar chimney is a natural draft device which uses solar radiation to provide upward momentum to the in-flowing air, thereby converting the thermal energy into kinetic energy. A study was undertaken to evaluate the performance characteristics of solar chimneys both theoretically and experimentally. In this paper, a mathematical model which was developed to study the effect of various parameters on the air temperature, air velocity, and power output of the solar chimney, is presented. Tests were conducted on a demonstration model which was designed and built for that purpose. The mathematical model presented here, was verified against experimental test results and the overall results were encouraging. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
A method for power generation combining a solar concentration system and a pneumatic power tube system in a large open pit is described. Solar energy is concentrated by a plurality of heliostat mirrors placed along the embankment of the pit, which tends to be spherical in contour. The pneumatic tubes recover waste heat energy from the solar Rankine power cycle system and from a variety of sources that originate from or are in close proximity to the very deep, man-made open-pit mine or from other naturally occurring geo-physical chasms. The man-made or naturally formed chasms provide structural support for the pneumatic power tubes. The air in the tubes is heated by the recovered waste energy, and in so doing, its density is sufficiently reduced so as to produce air drafts from which mechanical power can be recovered from wind turbines and converted into electrical power by suitable electric generators. The deep chasms can be from a man-made phenomenon such as commissioned, open-pit mines or from naturally occurring fissures in the earth. The waste heat can be from solar energy, ground source energy or products of combustion from waste products that are to be mitigated or destroyed. The concept is novel in its integration of a solar powered heat engine with recoverable waste heat via the proposed pneumatic power tube as well as in the means of structural support that the geo-physical phenomenon provides and the modularity (for ease in manufacturing and installation) that makes the pneumatic power tube economically viable. The complete system uses state-of-the art wind turbine power recovery, solar reflective surfaces for solar energy collection, heat pipe arrays for ground source heat recovery, and air diffuser subsystems for enhanced wind turbine efficiency.  相似文献   

8.
Proton Exchange Membrane Fuel Cells (PEMFC) have proven to be a promising energy conversion technology in various power applications and since it was developed, it has been a potential alternative over fossil fuel-based engines and power plants, all of which produce harmful by-products. The inlet air coolant and reactants have an important effect on the performance degradation of the PEMFC and certain power outputs. In this work, a theoretical model of a PEM fuel cell with solar air heating system for the preheating hydrogen of PEM fuel cell to mitigate the performance degradation when the fuel cell operates in cold environment, is proposed and evaluated by using energy analysis. Considering these heating and energy losses of heat generation by hydrogen fuel cells, the idea of using transpired solar collectors (TSC) for air preheating to increase the inlet air temperature of the low-temperature fuel cell could be a potential development. The aim of the current article is applying solar air preheating for the hydrogen fuel cells system by applying TSC and analyzing system performance. Results aim to attention fellow scholars as well as industrial engineers in the deployment of solar air heating together with hydrogen fuel cell systems that could be useful for coping with fossil fuel-based power supply systems.  相似文献   

9.
Solar energy is a clean, abundant and easily available renewable energy. Usage of solar energy in different kinds of systems provides scope for several studies on exergy analysis. In the present work, a comprehensive literature review has been carried out on exergy analysis of various solar energy systems. The systems considered under study are solar photovoltaic, solar heating devices, solar water desalination system, solar air conditioning and refrigerators, solar drying process and solar power generation. The summary of exergy analysis and exergetic efficiencies is presented along with the exergy destruction sources.  相似文献   

10.
利用热力学方法建立太阳能烟囱发电系统中集热棚、烟囱及风力透平的热气流能量转换过程的理论模型及求解方法.鉴于太阳能烟囱发电站的大尺寸特征,采用一维假设建立热气流传热模型,使用龙格-库塔方法对非线性能量方程进行数值求解.对集热棚直径3 600 m,烟囱高950 m,设计功率100 MW的大型太阳能烟囱发电站进行分析与计算,给出了该电站的风力透平轴功率随质量流量和太阳辐射强度变化的规律,为风力透平机组提供热力气动设计参数,为大规模开发利用太阳能提供借鉴.  相似文献   

11.
一种新型太阳能海水淡化系统的实验研究   总被引:1,自引:1,他引:0  
介绍了一种新型的太阳能海水淡化方法,即结合太阳能空气集热器和太阳能热管、利用空气增湿除湿来实现海水淡化。分别进行了电吹风模拟太阳能空气集热器的蒸发器实验,以及结合3m2太阳能空气集热器和热管集热器的实际装置实验。结果表明,影响蒸发量的主要因素为热空气温度、热空气流量、初始水量、水温、出气孔直径和数量。实验结果表明,装置可获得的最大冷凝量为790g/h,计算出系统的产水率和热力学效率分别为5.59×10-5kg/kJ和12.4%。  相似文献   

12.
A new configuration of solar energy-driven integrated system for ammonia synthesis and power generation is proposed in this study. A detailed dynamic analysis is conducted on the designed system to investigate its performance under different radiation intensities. The solar heliostat field is integrated to generate steam that is provided to the steam Rankine cycle for power generation. The significant amount of power produced is fed to the PEM electrolyser for hydrogen production after covering the system requirements. A pressure swing adsorption system is integrated with the system that separates nitrogen from the air. The produced hydrogen and nitrogen are employed to the cascaded ammonia production system to establish increased fractional conversions. Numerous parametric studies are conducted to investigate the significant parameters namely; incoming beam irradiance, power production using steam Rankine cycle, hydrogen and ammonia production and power production using TEGs and ORC. The maximum hydrogen and ammonia production flowrates are revealed in June for 17th hour as 5.85 mol/s and 1.38 mol/s and the maximum energetic and exergetic efficiencies are depicted by the month of November as 25.4% and 28.6% respectively. Moreover, the key findings using the comprehensive dynamic analysis are presented and discussed.  相似文献   

13.
14.
为缩短枸杞干燥时间,提高干制枸杞的质量,减少能源消耗,本文提出了一种新型太阳能–空气源热泵联合干燥系统。该系统主要由太阳能集热器和空气源热泵机组等设备组成,可以实现太阳能单独干燥、热泵单独干燥和太阳能–空气源热泵联合干燥三种工作模式。本文根据枸杞的干燥特性,分段设定最佳的干燥温度,进行了热泵单独运行和太阳能–热泵联合运行两种工作模式下干燥枸杞的对比实验。结果表明,干燥50 kg枸杞,太阳能–热泵联合运行比热泵单独运行节省了2.9 kW?h电能,若同时除去系统本身的耗能,节省的电能占热泵单独运行耗电量的29.5%。同时,与太阳能单独干燥相比,太阳能–热泵联合干燥具有较高的除湿能耗比,两者最大差值为0.71 kg/(kW?h)。本文提出的太阳能–热泵联合干燥系统具有提高干燥产品的品质、缩短干燥时间和节约干燥成本等优点,适宜推广。  相似文献   

15.
A natural extension of the design procedure for liquid-based solar space and water heating systems is a similar analysis for solar heating systems using air as the heat transfer fluid. In this paper, a solar air heating system incorporating a flat-plate air heater and packed bed thermal storage is described and a simulation model for the system is developed. The results of many simulations of the air heating system are used to establish the relationship between system performance and the system design and meteorological variables. The results are presented in analytic and graphical form, referred to as an f-chart for solar air heating systems. The results of simulations in several widely different climates suggest that the information presented in the f-chart is location independent. Methods of estimating the performance of air heating systems having a collector air capacitance rate and a storage capacity other than those used to generate the f-chart are included. A comparison of the performance of air and liquid based systems is afforded by a comparison of their respective f-charts. The air system is shown to perform better at high load fractions supplied by solar energy than a liquid-based system with the same collector thermal performance parameters.  相似文献   

16.
张兴科 《中外能源》2012,17(3):32-36
减少我国冬季采暖所造成的大气污染,降低供暖系统的能耗,节约能源一直是建筑节能追求的目标.目前太阳能光伏发电已经成为人类利用太阳能的最主要方式之一,地源热泵已被作为一项旨在解决建筑冷热源问题的新技术,日渐受到人们的重视.将光伏转换与热泵循环有机结合在一起,从而形成了太阳能光伏-地源热泵系统.该系统提高了光电转换和光热吸收效率,光电/光热综合利用,极大地提高了单位面积太阳辐照的利用效率,同时可提高热泵系统在寒冷地区运行的适用性;利用光电效应把太阳能中高能带区域的光能直接转化成电能,可大大提高太阳能的可用能效率;在增加能量储存装置和逆变器的条件下,可以使系统脱离公用电网运行,从而增加了系统的适用性和灵活性;与普通的空气源热泵相比,太阳能地源热泵具有较高的热性能,具有一机多用的功效;与建筑物相结合的太阳能热泵系统,可以增加建筑物的隔热效果,起到减少建筑物冷暖负荷的作用,同时可极大地减少环境污染.  相似文献   

17.
在直通式太阳能玻璃真空管空气集热器基础上改进联箱结构,并搭建测试平台对该种改进型空气集热器进行热性能实验研究。通过实验比较改进前后集热器的温升和效率,获得改进后集热器出口温度与太阳辐照度关系的线性回归方程,掌握不同空气质量流量对集热器出口温度和集热效率的影响规律,分析得到该种真空管的最佳串联个数,并对应用该种集热器的太阳能干燥系统的干燥效果进行初步测试分析。该研究结果可为太阳能空气集热干燥系统的设计及应用提供参考。  相似文献   

18.
Under dual crisis of energy and freshwater, solar chimney technology has been widely applied in freshwater production in recent years. According to different access to freshwater, the research progress of the coupling of solar chimney with other technologies such as solar desalination technology, humidification and humidification desalination technology, as well as integrated systems that obtain freshwater output from ambient air were summarized respectively. The integrated solar chimney system can realize multi-target production of electricity and freshwater, and improve the comprehensive utilization of solar energy, which provides new possibility for the site selection and small-scale construction of solar chimney power plant in the future. It has certain practical significance and is conducive to the promotion and application of solar chimney technology.  相似文献   

19.
Solar gas turbine systems: Design, cost and perspectives   总被引:2,自引:0,他引:2  
The combination of high solar shares with high conversion efficiencies is one of the major advantages of solar gas turbine systems compared to other solar-fossil hybrid power plants. Pressurized air receivers are used in solar tower plants to heat the compressed air in the gas turbine to temperatures up to 1000 °C. Therefore solar shares in the design case of 40% up to 90% can be realized and annual solar shares up to 30% can be achieved in base load. Using modern gas turbine systems in recuperation or combined cycle mode leads to conversion efficiencies of the solar heat from around 40% up to more than 50%. This is an important step towards cost reduction of solar thermal power. Together with the advantages of hybrid power plants—variable solar share, fully dispatchable power, 24 h operation without storage—solar gas turbine systems are expected to have a high potential for market introduction in the mid term view.In this paper the design and performance assessment of several prototype plants in the power levels of 1 MW, 5 MW and 15 MW are presented. Advanced software tools are used for design optimization and performance prediction of the solar tower gas turbine power plants. Detailed cost assumptions for the solarized gas turbine, the solar tower plant and further equipment as well as for operation and maintenance are presented. Intensive performance and economic analysis of the prototype plants for different locations and capacity factors are shown. The cost reduction potential through automation and remote operation is revealed.  相似文献   

20.
The working principle and thermal performance of a new v-trough solar concentrator are presented in this paper. Compared with the common parabolic trough solar concentrators, the new concentrator has two parabolic troughs which form a V-shape with the focal line at the bottom of the troughs. This is beneficial for the installation and insulation of the receiver, and the shadow on the reflective surface is avoided. The new v-trough collector does not require high precision tracking devices and reflective material. And therefore the cost of the system could be significantly reduced. Various experimental tests were carried out both outdoor and indoor using different types of receiver tubes. The results show that the collector system can have thermal efficiency up to 38% at 100 °C operating temperature. System modelling was used to predict the rate of fresh water produced by four different solar collector systems which include both static and one-axis solar tracking technologies. Comparison of the solar collectors at different temperature ranges for humidification/dehumidification desalination process using specific air flow rate were considered. At each temperature range, suitable solar collectors were compared in the aspect of fresh water production and area of solar collector required. Results showed that the new v-trough solar collector is the most promising technology for small to medium scale solar powered water desalination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号