首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

CeO2 and SrBi2Ta2O9 (SBT) thin films for MFISFET (metal-fcrroelectrics-insulator-semiconductor field effect transistor) were deposited by rf sputtering and pulsed laser deposition method, respectively. The effects of oxygen partial pressure during deposition for CeO2 films were investigated. The oxygen partial pressure significantly affected the preferred orientation, grain size and electrical properties of CeO2 films. The CeO2 thin films with a (200) preferred orientation were deposited on Si(100) substrates at 600°C. The films deposited under the oxygen partial pressure of 50 % showed the best C-V characteristics among those under various conditions. The leakage current density of films showed order of the 10?7~10?8 A/cm2 at 100 kV/cm. The SBT thin films on CeO2/Si substrate showed dense microstructure of polycrystalline phase. From the C-V characteristics of MFIS structure composed of the SBT film annealed at 800°C, the memory window width was 0.9 V at ±5 V. The leakage current density of Pt/SBT/CeO2/Si structure annealed at 800°C was 4×10?7 A/cm2 at 5 V.  相似文献   

2.
Abstract

SrBi2Ta2O9 (SBT) thin films were deposited on 6-inch Pt/Ti/SiO2/Si substrates by rf magnetron sputtering using a 12-inch ceramic SBT single target. It is found that several sputtering parameters such as argon (Ar) pressure and rf power were very effective to control the Bi content of SBT thin films which is essential for obtaining good ferroelectric properties.  相似文献   

3.
In this study, radio frequency (RF) sputtering was used as the method and the layer-structured bismuth compound of SrBi4Ti4O15 + 4 wt% Bi2O3 ferroelectric ceramic was used as the target to deposit the SrBi4Ti4O15 (SBT) thin films. The addition of excess Bi2O3 content in the target ceramic was used to compensate the vaporization of Bi2O3 during the sintering and deposition processes. SBT ferroelectric thin films were deposited on Pt/Ti/SiO2/Si under optimal RF magnetron sputtering parameters with different substrate temperatures for 2 h. After that the SBT thin films were post-heated using rapid temperature annealing (RTA) method. The dielectric and electrical characteristics of the SBT thin films were measured using metal-ferroelectric-metal (MFM) structure. From the physical and electrical measurements of X-ray diffraction pattern, scanning electronic microscope (SEM), I-V curve, and C-V curve, we had found that the substrate temperature and RTA-treated temperature had large influences on the morphology, the crystalline structure, the leakage current density, and the dielectric constant of the SBT thin films.  相似文献   

4.
Abstract

The effects of sputtering conditions on the SrBi2Ta2O9 films deposited via a single-target RF-sputtering process were investigated in this study. It was found that the composition of targets significantly affected the phases and the composition of the deposited films. When the target contained high bismuth content, SrBi2Ta2O9 and a secondary Bi2O3 phase were formed. When the bismuth content in the targets was insufficient, a pyrochlore phase was produced. SEM images revealed that the composition of the targets also affected the surface morphology of the obtained films. When the target-to-substrate distance was increased, bismuth oxide was formed, which resulted in an increase in the leakage current. By optimizing the deposition conditions, the ferroelectric properties of SrBi2Ta2O9 films were improved.  相似文献   

5.
Ferroelectric Si-doped (Bi,Nd)4Ti3O12 thin films have been prepared on Pt/TiOx/SiO2/Si substrates through metal-organic compounds by the chemical solution deposition. The Bi3.25Nd0.75Ti2.9Si0.1O12 (BNTS) precursor films were found to crystallize into the Bi-layered perovskite Bi4Ti3O12 single-phase above 600C. The synthesized BNTS films revealed a random orientation having a strong 117 reflection. The BNTS thin films prepared between 600C and 700C showed well-saturated P-E hysteresis loops with P r of 13–14 μ C/cm2 and E c of 100–110 kV/cm at an applied voltage of 5 V. The surface roughness of the BNTS thin films was improved by Si doping compared with that of undoped Bi3.35Nd0.75Ti3O12 films.  相似文献   

6.
Abstract

Bi–layered ferroelectric SrBi2Ta2O9 (SBT) films were successfully prepared on Pt/Ti/SiO2/Si substrates at 650°C by a modified rf magnetron sputtering technique. The SBT films annealed for 1 h in O2 (760 torr) and again for 30 min in O2 (5 torr) at 650°C show a average grain size of about 49 nm. The SBT films annealed at 65 0°C have a remanent polarization (Pr) of 6.0 μC/cm2 and coercive field (Ec) of 36 kV/cm at an excitation voltage of 5 V. The films showed fatigue–free characteristics up to 4.0 × 1010 switching cycles under 5 V bipolar pulse. The retention characteristics of SBT films looked very promosing up to 1.0 × 105 s.  相似文献   

7.
Abstract

SrBi2Ta2O9 (SBT) is an attractive material for nonvolatile ferroelectric memory applications. In this paper we report on the deposition of highly epitaxial and smooth SrBi2Ta2O9 films on (110) SrTiO3substrates. The films were grown by pulsed laser deposition at temperatures ranging from 600 to 800°C and at various laser fluences from a Bi-excess SBT target. The background oxygen pressure was maintained at 28 Pa during the film deposition. Structural characterization of the films was performed by x-ray diffraction. Atomic force microscopy was used to investigate morphology and growth of the films. The films grew with preferred (115) or (116) orientation. The roughness was of the order of unit cell height. The films display a growth pattern resulting in corrugated film morphology.  相似文献   

8.
Abstract

Ferroelectric SrBi2Ta2O9(SBT) thin films prepared by metalorganic decomposition (MOD) method were annealed in forming gas (5% hydrogen + 95% nitrogen) at different temperatures for 60 min. SEM analysis results showed that an amount of columnar structures appeared on SBT surface when the annealing temperature was up to 450°C. When the annealing temperature raised up to 500°C, these columnar structures grew along one dimension and changed into wire structures. The EDX micro-area mapping analysis result showed that Bi was concentrated in the columnar or wire structures on SBT surface. The ferroelectric property analysis results showed that the hysteresis loops still existed after 5 min forming gas processing (350°C or 400°C), but when the annealing time was longer than 10 min, the resistance of the SBT samples became too low to measure the hysteresis loops.  相似文献   

9.
Abstract

Epitaxial thin film growth of SrBi2Ta2O9/SrTiO3/Ce0.12Zr0.88O2 on Si was studied, and this epitaxial layer structure was applied to fabrication of ferroelectric-gate field effect transistors (FETs). The films were prepared by a pulsed laser deposition technique and epitaxial growth was identified by x-ray diffraction. The devices exhibited excellent electrical performances: Capacitance-voltage characteristic of a metal-ferroelectric-insulator-semiconductor (MFIS) diode showed a retention longer than 10 days and Id-Vg characteristic of an MFIS-FET showed 1 day retention. It is proved that the crystalline quality of ferroelectric thin films is of great importance to develop integrated devices with high performance.  相似文献   

10.
Abstract

Using the Rapid Thermal Annealing (RTA) process, a technique has been established to obtain SrBi2Ta2O9 (SBT) films which showed well-shaped hysteresis curves without a postannealing process after top electrode deposition, maintaining high remanent polarization (Pr) values. RTA conditions were optimized for nucleation of SBT. The effect of a seed layer on the film properties became obvious. This process allowed top electrode materials other than Pt. High remanent polarization (Pr) values could be also obtained with Pd top electrodes.  相似文献   

11.
Neodymium-modified Bi4Ti3O12, (Bi, Nd)4Ti3O12 (BNT) ferroelectric thin films have been prepared on Pt/TiOx/SiO2/Si substrates using metal-organic precursor solutions by the chemical solution deposition method. The BNT precursor films crystallized into the Bi layered perovskite Bi4Ti3O12 (BIT) as a single-phase above 600C. The synthesized BNT films revealed a random orientation having a strong 117 reflection, whereas non-substituted BIT thin films exhibited a random orientation with strong 00l diffractions. Among Bi4 – xNdxTi3O12 [x = 0.0, 0.5, 0.75, 1.0] thin films, Bi3.25Nd0.75Ti3O12 thin films showed a well-saturated P-E hysteresis loop with the highest Pr (22 C/cm2) and a low Ec (69 kV/cm) at an applied voltage of 5 V. The Nd-substitution with the optimum amount for the Bi site in the BIT structure was effective not only for promoting the 117 preferred orientation but also for improving the microstructure and ferroelectric properties of the resultant films.  相似文献   

12.
Abstract

The effects of annealing in forming gas (5% hydrogen, 95% nitrogen; FGA) are studied on spin coated SrBi2Ta2O9 (SBT) thin films. SBT films on platinum bottom electrode are characterized with and without platinum top electrode by Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), High Temperature X-Ray Diffraction (HT-XRD) and Secondary Ion Mass Spectrometry (SIMS).

High Temperature X-Ray Diffraction (HT-XRD) of blanket Ti/Pt/SBT films in forming gas revealed that the bismuth layered perovskite structure of the SBT is stable up to approx. 500°C. SIMS analysis of Pt/SBT/Pt samples annealed in deuterated forming gas (5% D2, 95% N2) showed that the hydrogen accumulates in the SBT layer and at the platinum interfaces next to the SBT. After FGA of blanket SBT films, tall platinum-bismuth whiskers are seen on the SBT surface.

Performing the FGA of the whole Pt/SBT/Pt/Ti stack, two different results are found. For the samples with a high temperature annealing (HTA) step in oxygen after top electrode patterning, top electrode peeling is observed after FGA. For the samples without a HTA step after top electrode patterning, no peeling is observed after FGA.  相似文献   

13.
Many efforts have been paid to uncouple the spontaneous polarizations of layer-structured bismuth-based ferroelectrics along different crystal orientations, obtaining these layered-structure films with non-c-axis orientations. In the paper, SrBi4Ti4O15 (m?=?4) thin films have been deposited on Pt/MgO bilayer-buffered Si(100) substrates by pulsed-laser deposition. Selective orientation of SrBi4Ti4O15 thin films mediated by different epitaxy relationships between electrode layers and MgO/Si substrates has been demonstrated. Furthermore, different hysteresis loops and remnant polarization of SrBi4Ti4O15 thin films with varied orientations have been obtained.  相似文献   

14.
Abstract

The crystallographic orientation, microstructure and electrical properties of Sr2(Ta, Nb)2O7 thin films strongly depended on the composition (Ta:Nb). Post-annealing at 850°C was effective for the improvement of some properties. The thin films with relatively Nb-rich compositions, such as Sr2(Ta0.6Nb0.4)2O7 and Sr2(Ta0.5Nb0.5)2O7, showed the (0k0) preferred orientation. The Sr2(Ta0.5Nb0.5)2O7 thin film had a lamination layer structure after the post-annealing at 850°C for 6 min in oxygen. The characteristic microstructure originated in the crystallographic orientation of (0k0), which is the cleavage plane, and influenced electrical properties. The dielectric constant little change with the composition, however, the P-E hysteresis properties improved with the Nb content.  相似文献   

15.
Abstract

We have successfully grown non-c-axis-oriented epitaxial ferroelectric SrBi2Ta2O9 (SBT) films with (116) and (103) orientations on Si(100) substrates using epitaxial (110)- and (111)-oriented SrRuO3 (SRO) bottom electrodes, respectively. The SRO orientations have been induced by coating the Si(100) substrates with epitaxial YSZ(100) and MgO(111)/ YSZ(100) buffer layers, respectively. All films were sequentially grown by pulsed laser deposition. Specific in-plane orientations of the epitaxial SBT films were found, which are in turn determined by specific in-plane orientations of the epitaxial SRO bottom electrodes. These include a diagonal rectangle-on-cube epitaxy of SRO(110) on YSZ(100) and a triangle-on-triangle epitaxy of SRO(111) on MgO(111).  相似文献   

16.
Growth of SrBi2Ta2O9 (SBT) thin films has been carried out in the presence of O2-plasma created by applying a potential at an auxiliary ring electrode placed near the substrate. Effect of plasma excitation potential and polarity, especially negative polarity, on the formation of a proper SBT phase at 700°C and in modifying crystallite orientation and microstructure of SBT films over (1 1 1) oriented Pt film coated over TiO2/SiO2/Si(1 0 0) substrates has been demonstrated. Preferred c-axis orientation of SBT films changes to (a–b) orientation with decrease in plasma excitation potential from –700 to –350 V and eliminates secondary Bi2Pt phase formation even at 600°C Microstructural study show a 2-dimensional large flat c-oriented crystallites formed at –700 V change to small crystallites in conformity with the changed aspect ratio for crystallites in (a–b) plane parallel to film plane. Spectroscopic ellipsometric results are in agreement with the microstructural data. These affects are attributed to O2-ion bombardment during film growth which reduces nucleation barrier for growth of crystallites in (a–b) plane. O2-plasma sustains the cationic species formed by laser ablation, which along with O 2 + ions, provide necessary activation energy and enhance the oxidation rates required for SBT phase formation even at 700°C. SBT films grown in O2-plasma show enhancement in remnant polarization value from 1.2 to 6.6 C/cm2 and display ferroelectric properties superior to those formed without plasma. Further O2-plasma eliminates post deposition annealing step for observance of enhanced polarization values. This study shows O2-plasma excitation potential could be exploited as a new process parameter in laser ablation growth of ferroelectric oxide thin films.  相似文献   

17.
Abstract

In this work, the microstructural defects in SrBi2Ta2O9 (SBT) ferroelectric thin films were investigated at the atomic-scale by high-resolution transmission electron microscopy (HRTEM). A stacking fault with an extra inserted Bi-O plane normal to the c-axis was observed in SBT film with 10mol% excess bismuth prepared by metalorganic deposition. Edge dislocations with an average space about 3nm were observed at the small misorientation angle (8.2°) tilt grain boundary of SBT film with (001)-orientation prepared by pulsed laser deposition. The Burgers vector b for the edge dislocation was determined to be 1/2[110]α0, where α0 is the parameter of SBT unit cell. Chemical compositions of grains and grain boundaries in SBT films annealed in forming gas at 450°C and 500°C for 60 minutes were analyzed by using energy dispersive spectra at the nano-scale. Effects of the microstructural defects and microchemistry of the grain boundaries on the leakage current of SBT films are briefly discussed.  相似文献   

18.
Bi4Ti3O12 thin films are deposited on ITO/glass and Pt/Ti/Si(100) substrates by R.F. magnetron sputtering at room temperature. The films are then heated by a rapid thermal annealing (RTA) process conducted in oxygen atmosphere at temperatures ranging from 550–700C. X-ray diffraction examination reveals that the crystalinity of the films grown on Pt/Ti/Si is better than that of the films grown on ITO/glass under the same fabrication conditions. SEM observation shows that the films grown on Pt/Ti/Si are denser than those grown on ITO/glass substrates. Interactive diffusion between the Bi4Ti3O12 film and the ITO film increases with the increase of annealing temperature. The optical transmittance of the thin film annealed at 650C is found to be almost 100% when the effect of the ITO film is excluded. The relative dielectric constants, leakage currents and polarization characteristics of the two films are compared and discussed.  相似文献   

19.
Abstract

Ferroelectric Bi4Ti3O12 thin films were deposited on Pt-coated oxidized Si substrate by electron cyclotron resonance (ECR) sputtering using ceramic targets. Crystal structure and dielectric properties of the films were investigated as functions of sputtering conditions such as substrate temperature and sputtering gas. Using a target with excess Bi content compared to stoichiometric composition was required to compensate Bi re-evaporation from the substrate and to obtain a perovskite single phase at 600°C. (117)-oriented films exhibited ferroelectric hysteresis loops. The remanent polarization and coercive field of the films were 9.8 μC/cm2 and 180 kV/cm, respectively.  相似文献   

20.
Abstract

Electrical properties of Lamodified bismuth titanate Bi3.25La0.75Ti3O12) thin films for a metal-ferroelectric-insulator-semiconductor (MFIS) structure were investigated with capacitance-voltage (C-V). The MFIS structure exhibits progressively increasing C-V memory window with a sweep voltage due to ferroelectric polarization with suppressed charge injection. Moreover, the asymmetric shift of threshold voltage with a sweep voltage was observed. The flat-band voltage (Vfb2) at the negative sweep was gradually increased with a sweep voltage. The flatband voltage (Vfb1) at the positive sweep decreased at low sweep voltages and then increased at further high voltages (i.e., Vfb1 shift toward the positive direction rather than the negative direction). The asymmetric behavior of C-V characteristics was attributed to negative trapped charges by electron injection from Si.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号