首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AlGaAs/GaAs/GaAs and GaInP/GaAs/GaAs n-p-n heterojunction bipolar transistors (HBTs) are now in widespread use in microwave power amplifiers. In this paper, improved HBT structures are presented to address issues currently problematic for these devices: high offset and knee voltages and saturation charge storage. Reduced HBT offset and knee voltages (V/sub CE,os/ and V/sub k/) are important to improve the power amplifier efficiency. Reduced saturation charge storage is desirable to increase gain under conditions when the transistor saturates (such as in over-driven Class AB amplifiers and switching mode amplifiers). It is shown in this paper that HBT structures using a 100-/spl Aring/-thick layer of GaInP between the GaAs base, and collector layers are effective in reducing V/sub CE,os/ to 30 mV and V/sub k/ measured at a collector current density of 2/spl times/10/sup 4/ A/cm/sup 2/ to 0.3 V (while for conventional HBTs V/sub CE,os/=0.2 V and V/sub k/=0.5 V are typical). A five-fold reduction in saturation charge storage is simultaneously obtained.  相似文献   

2.
The selectively implanted buried subcollector (SIBS) is a method to decouple the intrinsic and extrinsic C/sub BC/ of InP-based double-heterojunction bipolar transistors (DHBTs). Similar to the selectively implanted collector (SIC) used in Si-based bipolar junction transistors (BJTs) and HBTs, ion implantation is used to create a N+ region in the collector directly under the emitter. By moving the subcollector boundary closer to the BC junction, SIBS allows the intrinsic collector to be thin, reducing /spl tau//sub C/, while simultaneously allowing the extrinsic collector to be thick, reducing C/sub BC/. For a 0.35 /spl times/ 6 /spl mu/m/sup 2/ emitter InP-based DHBT with a SIBS, 6 fF total C/sub BC/ and >6 V BV/sub CBO/ were obtained with a 110-nm intrinsic collector thickness. A maximum f/sub T/ of 252 GHz and f/sub MAX/ of 283 GHz were obtained at a V/sub CE/ of 1.6 V and I/sub C/ of 7.52 mA. Despite ion implantation and materials regrowth during device fabrication, a base and collector current ideality factor of /spl sim/2.0 and /spl sim/1.4, respectively, at an I/sub C/ of 100 /spl mu/A, and a peak dc /spl beta/ of 36 were measured.  相似文献   

3.
Small-area regrown emitter-base junction InP/In-GaAs/InP double heterojunction bipolar transistors (DHBT) using an abrupt InP emitter are presented for the first time. In a device with emitter-base junction area of 0.7 /spl times/ 8 /spl mu/m/sup 2/, a maximum 183 GHz f/sub T/ and 165 GHz f/sub max/ are exhibited. To our knowledge, this is the highest reported bandwidth for a III-V bipolar transistor utilizing emitter regrowth. The emitter current density is 6/spl times/10/sup 5/ A/cm/sup 2/ at V/sub CE,sat/ = 1.5 V. The small-signal current gain h/sub 21/ = 17, while collector breakdown voltage is near 6 V for the 1500-/spl Aring/-thick collector. The emitter structure, created by nonselective molecular beam epitaxy regrowth, combines a small-area emitter-base junction and a larger-area extrinsic emitter contact, and is similar in structure to that of a SiGe HBT. The higher f/sub T/ and f/sub max/ compared to previously reported devices are achieved by simplified regrowth using an InP emitter and by improvements to the regrowth surface preparation process.  相似文献   

4.
This work reports the development of high power 4H-SiC bipolar junction transistors (BJTs) by using reduced implantation dose for p+ base contact region and annealing in nitric oxide of base-to-emitter junction passivation oxide for 2 hours at 1150/spl deg/C. The transistor blocks larger than 480 V and conducts 2.1 A (J/sub c/=239 A/cm/sup 2/) at V/sub ce/=3.4 V, corresponding to a specific on-resistance (R/sub sp on/) of 14 m/spl Omega/cm/sup 2/, based on a drift layer design of 12 /spl mu/m doped to 6/spl times/10/sup 15/cm/sup -3/. Current gain /spl beta//spl ges/35 has been achieved for collector current densities ranging from J/sub c/=40 A/cm/sup 2/ to 239 A/cm/sup 2/ (I/sub c/=2.1 A) with a peak current gain of 38 at J/sub c/=114 A/cm/sup 2/.  相似文献   

5.
Describes 150-nm-thick collector InP-based double heterojunction bipolar transistors with two types of thin pseudomorphic bases for achieving high f/sub T/ and f/sub max/. The collector current blocking is suppressed by the compositionally step-graded collector structure even at J/sub C/ of over 1000 kA/cm/sup 2/ with practical breakdown characteristics. An HBT with a 20-nm-thick base achieves a record f/sub T/ of 351 GHz at high J/sub C/ of 667 kA/cm/sup 2/, and a 30-nm-base HBT achieves a high value of 329 GHz for both f/sub T/ and f/sub max/. An equivalent circuit analysis suggests that the extremely small carrier-transit-delay contributes to the ultrahigh f/sub T/.  相似文献   

6.
A new and interesting InGaP/Al/sub x/Ga/sub 1-x/As/GaAs composite-emitter heterojunction bipolar transistor (CEHBT) is fabricated and studied. Based on the insertion of a compositionally linear graded Al/sub x/Ga/sub 1-x/As layer, a near-continuous conduction band structure between the InGaP emitter and the GaAs base is developed. Simulation results reveal that a potential spike at the emitter/base heterointerface is completely eliminated. Experimental results show that the CEHBT exhibits good dc performances with dc current gain of 280 and greater than unity at collector current densities of J/sub C/=21kA/cm/sup 2/ and 2.70/spl times/10/sup -5/ A/cm/sup 2/, respectively. A small collector/emitter offset voltage /spl Delta/V/sub CE/ of 80 meV is also obtained. The studied CEHBT exhibits transistor action under an extremely low collector current density (2.7/spl times/10/sup -5/ A/cm/sup 2/) and useful current gains over nine decades of magnitude of collector current density. In microwave characteristics, the unity current gain cutoff frequency f/sub T/=43.2GHz and the maximum oscillation frequency f/sub max/=35.1GHz are achieved for a 3/spl times/20 /spl mu/m/sup 2/ device. Consequently, the studied device shows promise for low supply voltage and low-power circuit applications.  相似文献   

7.
We report an InP-InGaAs-InP double heterojunction bipolar transistor (DHBT), fabricated using a conventional triple mesa structure, exhibiting a 370-GHz f/sub /spl tau// and 459-GHz f/sub max/, which is to our knowledge the highest f/sub /spl tau// reported for a mesa InP DHBT-as well as the highest simultaneous f/sub /spl tau// and f/sub max/ for any mesa HBT. The collector semiconductor was undercut to reduce the base-collector capacitance, producing a C/sub cb//I/sub c/ ratio of 0.28 ps/V at V/sub cb/=0.5 V. The V/sub BR,CEO/ is 5.6 V and the devices fail thermally only at >18 mW//spl mu/m/sup 2/, allowing dc bias from J/sub e/=4.8 mA//spl mu/m/sup 2/ at V/sub ce/=3.9 V to J/sub e/=12.5 mA//spl mu/m/sup 2/ at V/sub ce/=1.5 V. The device employs a 30 nm carbon-doped InGaAs base with graded base doping, and an InGaAs-InAlAs superlattice grade in the base-collector junction that contributes to a total depleted collector thickness of 150 nm.  相似文献   

8.
InP/In/sub 0.53/Ga/sub 0.47/As/InP double heterojunction bipolar transistors (DHBT) have been designed for increased bandwidth digital and analog circuits, and fabricated using a conventional mesa structure. These devices exhibit a maximum 450 GHz f/sub /spl tau// and 490 GHz f/sub max/, which is the highest simultaneous f/sub /spl tau// and f/sub max/ for any HBT. The devices have been scaled vertically for reduced electron collector transit time and aggressively scaled laterally to minimize the base-collector capacitance associated with thinner collectors. The dc current gain /spl beta/ is /spl ap/ 40 and V/sub BR,CEO/=3.9 V. The devices operate up to 25 mW//spl mu/m/sup 2/ dissipation (failing at J/sub e/=10 mA//spl mu/m/sup 2/, V/sub ce/=2.5 V, /spl Delta/T/sub failure/=301 K) and there is no evidence of current blocking up to J/sub e//spl ges/12 mA//spl mu/m/sup 2/ at V/sub ce/=2.0 V from the base-collector grade. The devices reported here employ a 30-nm highly doped InGaAs base, and a 120-nm collector containing an InGaAs/InAlAs superlattice grade at the base-collector junction.  相似文献   

9.
This letter reports a newly achieved best result on the specific ON-resistance (R/sub SP/spl I.bar/ON/) of power 4H-SiC bipolar junction transistors (BJTs). A 4H-SiC BJT based on a 12-/spl mu/m drift layer shows a record-low specific-ON resistance of only 2.9 m/spl Omega//spl middot/cm/sup 2/, with an open-base collector-to-emitter blocking voltage (V/sub ceo/) of 757 V, and a current gain of 18.8. The active area of this 4H-SiC BJT is 0.61 mm/sup 2/, and it has a fully interdigitated design. This high-performance 4H-SiC BJT conducts up to 5.24 A at a forward voltage drop of V/sub CE/=2.5 V, corresponding to a low R/sub SP-ON/ of 2.9 m/spl Omega//spl middot/cm/sup 2/ up to J/sub c/=859 A/cm/sup 2/. This is the lowest specific ON-resistance ever reported for high-power 4H-SiC BJTs.  相似文献   

10.
This paper presents the development of 1000 V, 30A bipolar junction transistor (BJT) with high dc current gain in 4H-SiC. BJT devices with an active area of 3/spl times/3 mm/sup 2/ showed a forward on-current of 30 A, which corresponds to a current density of 333 A/cm/sup 2/, at a forward voltage drop of 2 V. A common-emitter current gain of 40, along with a low specific on-resistance of 6.0m/spl Omega//spl middot/cm/sup 2/ was observed at room temperature. These results show significant improvement over state-of-the-art. High temperature current-voltage characteristics were also performed on the large-area bipolar junction transistor device. A collector current of 10A is observed at V/sub CE/=2 V and I/sub B/=600 mA at 225/spl deg/C. The on-resistance increases to 22.5 m/spl Omega//spl middot/cm/sup 2/ at higher temperatures, while the dc current gain decreases to 30 at 275/spl deg/C. A sharp avalanche behavior was observed at a collector voltage of 1000 V. Inductive switching measurements at room temperature with a power supply voltage of 500 V show fast switching with a turn-off time of about 60 ns and a turn-on time of 32 ns, which is a result of the low resistance in the base.  相似文献   

11.
We report on the performance of abrupt InP-GaInAs-InP double heterojunction bipolar transistors (DHBTs) with a thin heavily doped n-type InP layer at the base-collector interface. The energy barrier between the base and the collector was fully eliminated by a 4-nm-thick silicon doped layer with N/sub D/=3/spl times/10/sup 19/ cm/sup -3/. The obtained f/sub T/ and f/sub MAX/ values at a current density of 1 mA//spl mu/m/sup 2/ are comparable to the values reported for DHBTs with a grade layer between the base and the collector.  相似文献   

12.
We report on the realization of an InGaP-GaAs-based double heterojunction bipolar transistor with high breakdown voltages of up to 85 V using an Al/sub 0.2/Ga/sub 0.8/As collector. These results were achieved with devices with a 2.8 /spl mu/m collector doped to 6/spl times/10/sup 15/ cm/sup -3/ (with an emitter area of 60/spl times/60 /spl mu/m/sup 2/). They agree well with calculated data from a semi-analytical breakdown model. A /spl beta//R/sub SBI/ (intrinsic base sheet resistance) ratio of more than 0.5 by introducing a 150-nm-thick graded Al-content region at the base-collector heterojunction was achieved. This layer is needed to efficiently suppress current blocking, which is otherwise caused by the conduction band offset from GaAs to Al/sub 0.2/Ga/sub 0.8/As. The thickness of this region was determined by two-dimensional numerical device simulations that are in good agreement with the measured device properties.  相似文献   

13.
An analysis of the transit times and minority carrier mobility in n-p-n 4H-SiC RF bipolar junction transistors is presented. These parameters were extracted from small signal RF measurements on 4H-SiC RF transistors with three different base thicknesses: 100, 140, and 200 nm. The study shows that the room temperature minority carrier electron mobility is 215 cm/sup 2//V/spl middot/s for a base Al doping of N/sub B/=4/spl times/10/sup 18/ cm/sup -3/. The analysis reveals that the collector charging time /spl tau//sub C/ and the parasitic charging time /spl tau//sub P/ from the capacitance between metal pads and the underlying collector region have a significant effect on the transistors RF performance. The calculated RF gain is in good agreement with the measured results.  相似文献   

14.
To characterize and model the degradation of collector-up (C-up) heterojunction bipolar transistors (HBTs), we bias stress InGaP/GaAs C-up tunneling-collector HBTs (TC-HBTs) fabricated under various conditions for etching the collector mesas and of implanting boron ions into the extrinsic emitter. Contrary to the previous reports on reduction in collector current I/sub C/ of bias-stressed emitter-up HBTs fabricated with ion implantation, no I/sub C/ Gummel shift is observed in the case of C-up TC-HBTs, probably due to the lower damage resulting from the lower ion dosage. On the other hand, the base current of the bias-stressed C-up TC-HBTs increases with the decrease of the ion dose and with the increase of the collector mesa undercut under the collector electrode that is also used as an implant mask. We attribute the increased base current to the increased carrier recombination at the extrinsic base surface. Making the area of the emitter-base junction smaller than that of the base-collector junction-using electron-cyclotron resonance plasma etching together with lateral spreading of heavily implanted boron ions-results in a stable current gain even after a 1030-h testing at a junction temperature of 210/spl deg/C and a collector current density of 40/sup 2/kA/cm.  相似文献   

15.
This paper describes an RF SiGe BiCMOS technology based on a standard 0.18-/spl mu/m CMOS process. This technology has the following key points: 1) A double-poly self-aligned SiGe-HBT is produced by adding a four-mask process to the CMOS process flow-this HBT has an SiGe epitaxial base selectively grown on an epi-free collector; 2) two-step annealing of CMOS source/drain/gate activation is utilized to solve the thermal budget tradeoff between SiGe-HBTs and CMOS; and 3) a robust Ge profile design is studied to improve the thermal stability of the SiGe-base/Si-collector junction. This process yields 73-GHz f/sub T/, 61-GHz f/sub max/ SiGe HBTs without compromising 0.18-/spl mu/m p/sup +//n/sup +/ dual-gate CMOS characteristics.  相似文献   

16.
We report a 0.7/spl times/8 /spl mu/m/sup 2/ InAlAs-InGaAs-InP double heterojunction bipolar transistor, fabricated in a molecular-beam epitaxy (MBE) regrown-emitter technology, exhibiting 160 GHz f/sub T/ and 140 GHz f/sub MAX/. These initial results are the first known RF results for a nonselective regrown-emitter heterojunction bipolar transistor, and the fastest ever reported using a regrown base-emitter heterojunction. The maximum current density is J/sub E/=8/spl times/10/sup 5/ A/cm/sup 2/ and the collector breakdown voltage V/sub CEO/ is 6 V for a 1500-/spl Aring/ collector. In this technology, the dimension of base-emitter junction has been scaled to an area as low as 0.3/spl times/4 /spl mu/m/sup 2/ while a larger-area extrinsic emitter maintains lower emitter access resistance. Furthermore, the application of a refractory metal (Ti-W) base contact beneath the extrinsic emitter regrowth achieves a fully self-aligned device topology.  相似文献   

17.
We report an InP/InGaAs/InP double heterojunction bipolar transistor (DHBT), fabricated using a mesa structure, exhibiting 282 GHz f/sub /spl tau// and 400 GHz f/sub max/. The DHBT employs a 30 nm InGaAs base with carbon doping graded from 8/spl middot/10/sup 19//cm/sup 3/ to 5/spl middot/10/sup 19//cm/sup 3/, an InP collector, and an InGaAs/InAlAs base-collector superlattice grade, with a total 217 nm collector depletion layer thickness. The low base sheet (580 /spl Omega/) and contact (<10 /spl Omega/-/spl mu/m/sup 2/) resistivities are in part responsible for the high f/sub max/ observed.  相似文献   

18.
In this letter, we report the fabrication of high-voltage and low-loss 4H-SiC Schottky-barrier diodes (SBDs) with a performance close to the theoretical limit using a Mo contact annealed at high-temperature. High-temperature annealing for the Mo contact was found to be effective in controlling the Schottky-barrier height at 1.2-1.3 eV without degradation of n-factor and reverse characteristics. We successfully obtained a 1-mm/sup 2/ Mo-4H-SiC SBD with a breakdown voltage (V/sub b/) of 4.15 kV and a specific on resistance (R/sub on/) of 9.07 m/spl Omega//spl middot/cm/sup 2/, achieving a best V/sub b//sup 2//R/sub on/ value of 1898 MW/cm/sup 2/. We also obtained a 9-mm/sup 2/ Mo-4H-SiC SBD with V/sub b/ of 4.40 kV and R/sub on/ of 12.20 m/spl Omega//spl middot/cm/sup 2/.  相似文献   

19.
Improved power linearity of InGaP/GaAs heterojunction bipolar transistors (HBTs) with collector design is reported. The collector design is based on nonuniform collector doping profile which is to employ a thin high-doping layer (5/spl times/10/sup 17/ cm/sup -3//200 /spl Aring/) inside the collector (1/spl times/10/sup 16/ cm/sup -3//7000 /spl Aring/). The additional thin high-doping layer within the collector shows no obvious effects and impacts in dc characteristics and device fabrication if the layer was inserted close to the subcollector. For an HBT with a thin high-doping layer being inserted 4000 /spl Aring/ from the base-collector junction, the experimental result on third-order intermodulation demonstrates the significant reduction by as large as 9 dBc and improved IIP3 by 5 dB under input power of -10 dBm at frequency of 1.8 GHz.  相似文献   

20.
Low-frequency noise characteristics of NPN and PNP InP-based heterojunction bipolar transistors (HBTs) were investigated. NPN HBTs showed a lower base noise current level (3.85 /spl times/ 10/sup -17/ A/sup 2//Hz) than PNP HBTs (3.10 /spl times/ 10/sup -16/ A/sup 2//Hz), but higher collector noise current level (7.16 /spl times/ 10/sup -16/ A/sup 2//Hz) than PNP HBTs (1.48 /spl times/ 10/sup -16/ A/sup 2//Hz) at 10 Hz under I/sub C/=1 mA, V/sub C/=1 V. The NPN devices showed a weak dependence I/sub C//sup 0.77/ of the collector noise current, and a dependence I/sub B//sup 1.18/ of the base noise current, while the PNP devices showed dependences I/sub C//sup 1.92/ and I/sub B//sup 1.54/, respectively. The dominant noise sources and relative intrinsic noise strength were found in both NPN and PNP InP-based HBTs by comparing the noise spectral density with and without the emitter feedback resistor. Equivalent circuit models were employed and intrinsic noise sources were extracted. The high base noise current of PNP HBTs could be attributed to the exposed emitter periphery and higher electron surface recombination velocity in P-type InP materials, while the relatively high collector noise current of NPN HBTs may be due to the noise source originating from generation-recombination process in the bulk material between the emitter and the collector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号