首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Different poly(methyl methacrylate/n‐butyl acrylate)/poly(n‐butyl acrylate/methyl methacrylate) [P(BA/MMA)/P(MMA/BA)] and poly(n‐butyl acrylate/methyl methacrylate)/polystyrene [P(BA/MMA)/PSt] core‐shell structured latexes were prepared by emulsifier‐free emulsion polymerization in the presence of hydrophilic monomer 3‐allyloxy‐2‐hydroxyl‐propanesulfonic salt (AHPS). The particle morphologies of the final latexes and dynamic mechanical properties of the copolymers from final latexes were investigated in detail. With the addition of AHPS, a latex of stable and high‐solid content (60 wt %) was prepared. The diameters of the latex particles are ~0.26 μm for the P(BA/MMA)/P(MMA/BA) system and 0.22–0.24 μm for the P(BA/MMA)/PSt system. All copolymers from the final latexes are two‐phase structure polymers, shown as two glass transition temperatures (Tgs) on dynamic mechanical analysis spectra. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3078–3084, 2002  相似文献   

2.
In the past work, the shear resistance of pure poly(n‐butyl acrylate) was low, even incorporation of inorganic filler, silica in the composition. It is well‐known that the copolymerization of n‐butyl acrylate (BA) with methyl methacrylate (MMA) will increase the glass transition temperature, and enhance the shear resistance of acrylic polymers. In the current work, the preparation of a series of acrylic water‐borne pressure‐sensitive adhesives (PSAs) with the controlled composition and structure for the copolymerization of BA and acrylic acid (AA) with different MMA contents, poly(BA‐co‐MMA‐co‐AA) was reported and its effects on adhesive properties of the latices were investigated. The latices of poly(BA‐co‐MMA‐co‐AA) were prepared at a solid content of 50% by two‐stage sequential emulsion polymerization, and this process consisted of a batch seed stage giving a particle diameter of 111 nm, which was then grown by the semicontinuous addition of monomers to final diameter of 303 nm. Dynamic light scattering (DLS) was used to monitor the particle diameters and proved that no new nucleation occurred during the growth stage. Copolymerization of BA with MMA raised the glass transition temperature (Tg) of the soft acrylic polymers, and had the effect of improving shear resistance, while the loop tack and peel adhesion kept relatively high. The relationship between pressure‐sensitive properties and molecular parameters, such as gel content and molecular weight, was evaluated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Waterborne polyacrylate/poly(silicone‐co‐acrylate) emulsions were synthesized to develop coated fertilizers. The effects of the n‐butyl acrylate (BA)/methyl methacrylate (MMA) ratio, vinyltriethoxysilane, and synthesis method on the water resistance, glass‐transition temperature, mechanical properties, and nutrient‐release profiles were investigated. The results show that miniemulsion polymerization with a BA/MMA ratio of 55:45 was the most suitable for slow nutrient‐release applications. Under these conditions, the preliminary solubility rate of the nutrient was about 3%, and the 30‐day cumulative nutrient release was 15% at 25°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40369.  相似文献   

4.
The free‐radical polymerization of alkenyl‐terminated polyurethane dispersions with styrene and n‐butyl acrylate was performed to obtain a series of stable polyurethane–poly(n‐butyl acrylate‐co‐styrene) (PUA) hybrid emulsions. The core–shell structure of the emulsions was observed by transmission electron microscopy, and the microstructure was studied by 1H‐NMR and Fourier transform infrared spectroscopy. The effects of the poly(propylene glycol)s (number‐average molecular weights = 1000, 1500, and 2000 Da) and the mass ratios of polyurethane to poly(n‐butyl acrylate‐co‐styrene) (PBS; 50/50, 40/60, 30/70, 20/80, and 10/90) on the structure, morphology, and properties of the PUAs were investigated. The average particle size and water absorption values of the PUAs increased with increasing of PBS content. However, the surface tension decreased from 34.61 to 30.29 mN/m. PUA‐2, with a bimodal distribution, showed Newtonian liquid behaviors, and PUA‐3 showed a great thermal stability, fast drying characteristics, and excellent adhesion to packaging films. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43763.  相似文献   

5.
The emulsion polymerization of the monomers methyl methacrylate (MMA) and 2‐ethylhexyl acrylate (EHA) was studied to investigate the effect of the crosslinkable monomer poly(propylene glycol diacrylate) (PPGDA). IR spectroscopy, NMR, differential scanning calorimetry, gel permeation chromatography, and scanning electron microscopy were used to characterize the synthesized polymers. These polymers were coated on glass panels and cured at appropriate temperatures to study the physical properties, swelling behavior, surface tension, and contact angle of these polymer latices. The results show that as the concentration of EHA monomer increased, the surface tension of the latices decreased. The copolymers were characterized by 1H‐NMR spectroscopy to ensure the absence of unreacted monomer, and the results confirm the incorporation of EHA units in the copolymer. The contact angle of the latices on the glass substrate was smaller than that on the metal. The swelling mechanism of the film showed that the Fickian diffusion coefficient with 10 wt % PPGDA was at a minimum value and was the most highly crosslinked polymer among the samples. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Acrylic emulsion pressure‐sensitive adhesives (PSAs) were synthesized by the copolymerization of n‐butyl acrylate with various levels of 2‐ethyl hexyl acrylate (2EHA) and a small constant amount of acrylic acid. The effect of varying the n‐butyl acrylate/2EHA monomer composition on the kinetic behavior of the polymerization and the characteristics of the copolymers prepared in a batch process were investigated. The results showed that increasing the amount of 2EHA in the monomer caused the polymerization rate and the glass‐transition temperature of the acrylic copolymers to decrease. Increasing the amount of 2EHA caused the gel content of the copolymers to decrease, reaching a minimum at 50 wt %; thereafter, the gel content increased at higher 2EHA levels. For the acrylic emulsion, the peel‐fracture energy of the PSAs decreased as the amount of 2EHA in the monomer was increased up to 50 wt %. At higher 2EHA levels, the peel‐fracture energy was relatively constant. Interestingly, a synergistic effect of increased shear resistance at 25 wt % 2EHA was observed without a significant trade‐off in terms of the peel and tack properties. This behavior was attributed to a good interconnection between the microgels and the free polymer chains inside the contacting particles in the adhesive film. Cooperation between various levels of 2EHA in the copolymer structure simultaneously changed the crosslink molecular weight (Mc) of the microgels and the entanglement molecular weight (Me) of the free chains in the adhesive network morphology. The adhesive performance of the PSAs was found to be correlated with their Mc/Me values as the 2EHA proportion was varied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
The oil absorption properties of porous polymeric gels are dependent on their synthesis conditions. In this work, we have investigated whether it is feasible to find a quantitative relationship between the synthesis conditions of porous poly(EDPM/4‐tert‐Butylstyrene) gels and their behavior in the kerosene absorption through a factorial design of experiments. For this purpose, a series of such oil gels have been synthesized in toluene with various divinylbenzene (DVB) and EPDM contents. The kerosene absorbency and kerosene‐absorption kinetics of oil gels were determined. Finally, empirical models correlating the synthesis conditions with the kerosene absorbency (Qeq) and kerosene‐absorption kinetic constant (K) were calculated; it was observed that lower the DVB concentration and higher the EPDM fraction in the monomeric mixtures, the higher the kerosene absorbency. With regard to the kerosene‐absorption kinetics, the largest K value was achieved with the lowest DVB concentration and the highest EPDM fraction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
The separation of a chlorinated hydrocarbon from a dilute aqueous solution through a crosslinked acrylate copolymer–porous substrate composite membrane by pervaporation was investigated. Poly(n‐butyl acrylate‐co‐acrylic acid) and poly(n‐butyl acrylate‐co‐2‐hydroxyethyl acrylate) were synthesized and composite membranes were prepared, which were made from the crosslinked polymer and a porous substrate. Pervaporation measurement was carried out for a dilute aqueous solution of 1,1,2‐trichloroethane at 25°C and under a vacuum on the permeate side (below 10 mmHg). The separation factor, overall flux, 1,1,2‐trichloroethane concentration in the membrane, and the degree of swelling decreased with increase in the acrylic acid or 2‐hydroxyethyl acrylate content of the acrylate copolymer. The influence of the crosslinking agent content on the pervaporation performance was small, and the separation factor and the overall flux showed a convex curve. The structure of the crosslinking agent had no effect on the separation. The influence of the pore size of the substrate and the thickness of the polymer layer on the separation of 1,1,2‐trichloroethane was observed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 983–994, 1999  相似文献   

9.
A hybrid synthesis technology was used to prepare waterborne polyurethane/acrylic hybrid emulsions by polymerization of methyl methacrylate, butyl acrylate, 2‐ethylhexyl acrylate(EHA), and N‐acryloylmorpholine (AMCO) in presence of acrylic‐terminated PU dispersion. Various characterization methods were used to investigate the effect of EHA and ACMO content on the properties of the hybrid emulsions and their resultant films. The research results show that the introduction of EHA can enhance the elasticity of their films, meanwhile, ACMO endows the film with high gloss, adhesion on substrate, toughness, and hardness. Mixing the two monomers leads to yield the hybrid materials with moderate properties. While increasing the weight ratio of ACMO/EHA, the average particle size of the hybrid emulsions increases and their viscosity decreases. For the resultant films, their surface water contact angle, adhesion on substrates, tensile strength, and hardness increase, but the water resistance and elasticity decrease. It has been found that EHA and ACMO have a synergistic effect on gloss of the hybrid films and the hydrogen bond interaction increases with an increase in the ACMO content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41463.  相似文献   

10.
Gelatin‐g‐poly (butyl acrylate) copolymers were prepared with gelatin and butyl acrylate. The effects of various reaction parameters, including the concentration of the monomer, the concentration of the initiator, the concentration of gelatin, the reaction time, and the temperature, on the swelling behavior were studied systematically. In addition, the effect of the intercalation of graft copolymers with montmorillonite on the swelling behavior was investigated. The results indicated that the graft copolymerization and intercalation with montmorillonite could greatly reduce the swelling degree of gelatin. The swelling process of the copolymers followed second‐order kinetics identical to those of the original gelatin. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1033–1037, 2005  相似文献   

11.
The rheological behavior and thermal properties of a poly(butyl acrylate‐co‐2‐ethylhexyl acrylate) [P(BA‐EHA)]‐grafted vinyl chloride (VC) composite resin [P(BA‐EHA)/poly(vinyl chloride) (PVC)] and its materials were investigated. The rheological behavior, thermal stability, and Vicat softening temperature (VST) of P(BA‐EHA)/PVC were measured with capillary rheometry, thermal analysis, and VST testing, respectively. The effects of the P(BA‐EHA) content and the polymerization temperature of grafted VC on the rheological behavior of the composite resin were examined. The weight loss of the composite resin and its extracted remainder via heating were analyzed. The influence of the content and crosslinking degree of P(BA‐EHA) and the polymerization temperature of the grafted VC on VST of the materials was determined. The results indicated the pseudoplastic‐flow nature of the composite resin. The flow property of the modified PVC resin was improved because of the incorporation of the acrylate polymer. The molecular weight of PVC greatly influenced the flow behavior and VST of the composite resin and its materials. The flowability of the composite resin markedly increased, and the VST of its materials decreased as the polymerization temperature of the grafted VC increased. The initial degradation temperature of the composite resin increased as the P(BA‐EHA) content increased. The VST of the samples was enhanced a little as the content of the crosslinking agent increased in P(BA‐EHA). As expected, the composite resin, with good impact resistance, had better heating stability and flowability than pure PVC, whereas the VST of the material decreased little with increasing P(BA‐EHA) content. Therefore, P(BA‐EHA)/PVC resins prepared by seeded emulsion polymerization have excellent potential for widespread applications. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 419–426, 2005  相似文献   

12.
Bis(1H, 1H, 2H, 2H‐perfluoro‐octyl)methylenesuccinate (FOM)/ethyl acrylate (EA)/methyl methacrylate (MMA) copolymer (FOME) latexes, FOM/butyl acrylate (BA)/MMA copolymer (FOMB) latexes, and FOM/octyl acrylate (OA)/MMA copolymer (FOMO) latexes were synthesized by continuous emulsion polymerization. Solution polymerization was also carried out to prepare FOMB. The influences of fluorine content and curing conditions on the surface properties of polymer films were discussed. The water and oil repellency of cotton fabrics treated with the FOM copolymers was better than that of conventional poly(fluoroalkyl acrylate)s containing the same fluorinated chain. The polymer films or the treated fabrics were characterized by Fourier transform infrared, scanning electron microscope, atomic force microscopy, thermogravimetric analysis, x‐ray photoelectron spectrometry, and wide angle x‐ray diffraction. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci, 2013  相似文献   

13.
We report a facile strategy for fabricating fluorescent quantum dot (QD)‐loaded microbeads by means of microfluidic technology. First, a functional fluorine‐containing microemulsion was synthesized with poly[(2‐(N‐ethylperfluorobutanesulfonamido)ethyl acrylate)‐co‐(methyl methacrylate)‐co‐(butyl acrylate)] (poly(FBMA‐co‐MMA‐co‐BA)) as the core and glycidyl methacrylate (GMA) as the shell via differential microemulsion polymerization. Then, CdTe QDs capped with N‐acetyl‐l ‐cysteine (NAC) were assembled into the poly(FBMA‐co‐MMA‐co‐BA‐co‐GMA) microemulsion particles through the reaction of the epoxy group on the shell of the microemulsion and the carboxyl group of the NAC ligand capped on the QDs. Finally, fluorescent microbeads were fabricated using the CdTe QD‐loaded fluorine‐containing microemulsion as the discontinuous phase and methylsilicone oil as the continuous phase by means of a simple microfluidic device. By changing flow rate of methylsilicone oil and hybrid microemulsion system, fluorescent microbeads with adjustable sizes ranging from 290 to 420 µm were achieved. The morphology and fluorescent properties of the microbeads were thoroughly investigated using optical microscopy and fluorescence microscopy. Results showed that the fluorescent microbeads exhibited uniform size distribution and excellent fluorescence performance. © 2014 Society of Chemical Industry  相似文献   

14.
Crosslinked poly(butyl acrylate‐co‐2‐ethylhexyl acrylate) [P(BA–EHA)] latex was synthesized by seeded emulsion polymerization. P(BA–EHA)/poly(vinyl chloride) (PVC) composite latex was prepared using P(BA–EHA) latex as the seed. The effects of the amount of P(BA–EHA) on the latex particle diameters and mechanical properties of the materials are discussed. The grafting efficiency (GE) of P(BA–EHA)‐grafted vinyl chloride (VC) in the synthesized resin was investigated, and the GE increased with an increasing P(BA–EHA)/VC ratio. The morphology of P(BA–EHA)/PVC was characterized using TEM, SEM, and DMA. TEM indicated that the particles of the P(BA–EHA)/PVC composite latex have a clear core–shell structure. DMA illustrated that the compatibility between P(BA–EHA) and PVC was well improved. With an increasing P(BA–EHA) content, the loss peak in the low‐temperature range became stronger than that of pure PVC, and the maximum values of the loss peaks gradually shifted to higher temperature. SEM showed that the fractured surface of the composite sample exhibited better toughness of the material. The notched impact strength of the material with 4.2 wt % P(BA–EHA) was 11 times that of PVC. TEM showed that P(BA–EHA) was uniformly dispersed in the PVC matrix and that the interface between the two phases was indistinct. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 643–649, 2003  相似文献   

15.
Functional polydimethylsiloxanes containing vinyl groups (Vi‐PDMS) were used for silicone‐based organic polymers in composites and adhesive formulations. Poly(butyl acrylate/methyl methacrylate/vinyl silicone oil)/casein–caprolactam [P(BA‐MMA‐Vi‐PDMS)/CA‐CPL] nanoparticles were prepared via emulsifier‐free polymerization. The well‐defined core–shell structure of P(BA‐MMA‐Vi‐PDMS)/CA‐CPL nanoparticles was verified by transmission electron microscopy. The results of scanning electron microscopy and contact angle measurements proved that the as‐obtained coatings exhibited porous and hydrophobic properties, which were helpful for superior water vapor permeability. By comparing the appearance of the coatings before and after adhesion analysis, the excellent adhesion strength was proved to be dominated by Vi‐PDMS. The relationship between interface morphology and properties of the resultant coatings was investigated in detail. The nucleation mechanism for this soap‐free emulsion synthesis was also proposed accordingly. These results could help in designing coatings with better surface properties and wider application. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46501.  相似文献   

16.
A noncombustible tough poly(vinyl chloride) (tPVC) was prepared by suspension‐grafted copolymerization of poly(2‐ethylhexyl acrylate) (poly‐EHA; elastomer) with vinyl chloride (VC). Elastomer (poly‐EHA) was prepared by emulsion, mainly homopolymerization of 2‐ethylhexyl acrylate at a temperature of 30 ± 0.1°C in the presence of a redox system and with the advantage of dosing the monomer into two portions. Grafted‐suspension copolymerization of poly‐EHA with VC was carried out at 54 ± 0.1°C, keeping other reaction conditions only slightly modified in comparison with those for the polymerization of pure VC. An optimum content of the incorporated poly‐EHA in PVC was found to be in the range 7.5–8.5 wt %, whereas notched toughness of 85–87 kJ m?2 was reached. Both below and above the found range of the content of poly‐EHA, the toughness decreases. A copolymer prepared by a direct‐emulsion copolymerization of 2‐EHA and VC (poly‐EHA‐co‐VC) exhibited worse mechanical properties than the copolymer prepared by two polymerization steps. On the basis of experimental results, effects of the reaction procedure on the properties of resulting material are described. In addition to good mechanical properties, tPVC also shows its noncombustibly. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2355–2362, 2002  相似文献   

17.
Heterogeneous latexes were prepared by a semicontinuous seeded emulsion polymerization process under monomer starved conditions at 80 °C using potassium persulfate as the initiator and sodium dodecyl sulfate as the emulsifier. Poly(butyl acrylate) latexes were used as seeds. The second‐stage polymer was poly(styrene‐co‐methyl methacrylate). By varying the amounts of methyl methacrylate (MMA) in the second‐stage copolymer, the polarity of the copolymer phase could be controlled. Phase separation towards the thermodynamic equilibrium morphology was accelerated either by ageing the composite latex at 80 °C or by adding a chain‐transfer agent during polymerization. The morphologies of the latex particles were examined by transmission electron microscopy (TEM). The morphology distributions of latex particles were described by a statistical method. It was found that the latex particles displayed different equilibrium morphologies depending on the composition of the second‐stage copolymers. This series of equilibrium morphologies of [poly(butyl acrylate)/poly(styrene‐co‐methyl methacrylate)] (PBA/P(St‐co‐MMA)) system provides experimental verification for quantitative simulation. Under limiting conditions, the equilibrium morphologies of PBA/P(St‐co‐MMA) were predicted according to the minimum surface free energy change principle. The particle morphology observed by TEM was in good agreement with the predictions of the thermodynamic model. Therefore, the morphology theory for homopolymer/homopolymer composite systems was extended to homopolymer/copolymer systems. © 2002 Society of Chemical Industry  相似文献   

18.
A series of porous thermoreversible hydrogels were prepared from N‐isopropylacrylamide (90 mol %) and poly(ethylene glycol) methylether acrylate (10 mol %), which was derived from poly(ethylene glycol) monomethylether, N,N′‐methylenebisacrylamide, and porosigen, or poly (ethylene glycol) (PEG) with different molecular weights (MWs). The influence of pore volume in the gel on the physical properties, swelling kinetics, and solute permeation from these porous gels was investigated. The results show that the surface areas, pore volumes, and equilibrium swelling ratios for the porous gels increased with increasing MW of PEG, but the shear moduli and effective crosslinking densities decreased with increasing MW of PEG. The results from the dynamic swelling kinetics show that the transport mechanism was non‐Fickian. The diffusion coefficients of water penetrating into the gels increased with increasing pore volume of the gels. In addition, we also studied solute permeation through the porous gel controlled by temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5490–5499, 2006  相似文献   

19.
In this article, semi‐interpenetrating polymer network (Semi‐IPNs) based on nitrile rubber (NBR) and poly(methyl methacrylate‐co‐butyl acrylate) (P(MMA‐BA)) were synthesized. The structure and damping properties of the prepared Semi‐IPNs blends were characterized and by fourier transform infrared spectrum (FTIR), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), thermogravimetric analysis (TGA/DTG), and tensile mechanical properties. The results showed that interpenetrating network based on P(MMA‐BA) and NBR was successfully obtained, which showed the improved thermal stability compared to NBR/P(MMA‐BA)‐based two‐roll mill blends. Furthermore, Semi‐IPNs showed significantly better the dynamic mechanical properties than that of the two‐roll mill system. With the increasing feed ratio of BA and MMA during the preparation of Semi‐IPNs, the loss peak position for P(MMA‐BA) in NBR/PMMA IPNs shifted to a lower temperature from 20°C to ?17°C, and when NBR in Semi‐IPNs was accounted for 40 wt %, the dynamic mechanical thermal analysis showed that much more advanced damping material with wider temperature range (?30°C < T < 80°C) as tan δ > 0.45 can be achieved. Therefore, it was expected as a promising way to obtain the excellent damping materials with good oil‐resisted properties according the Semi‐IPNs system. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40217.  相似文献   

20.
Two‐phase model styrene–acrylate copolymers were synthesized with a soft phase consisting of methyl acrylate, butyl acrylate, and butyl methacrylate. Besides the styrenic copolymers, copolymers containing a hard phase of methyl methacylate and methyl acrylate were also synthesized. Comonomer droplets with a narrow size distribution and fair uniformity were prepared using an SPG (Shirasu porous glass) membrane having pore size of 0.90 μm. After the single‐step SPG emulsion, the emulsion droplets were composed mainly of monomers, hydrophobic additives, and an oil‐soluble initiator, suspended in the aqueous phase containing a stabilizer and inhibitor. These were then transferred to a reactor, and subsequent suspension polymerization was carried out. Uniform copolymer particles with a mean diameter ranging from 3 to 7 μm, depending on the recipe, with a narrow particle size distribution and a coefficient of variation of about 10% were achieved. Based on the glass‐transition temperatures, as measured by differential scanning calorimetry, the resulting copolymer particles containing a soft phase of acrylate were better compatibilized with a hard phase of methyl methacrylate than with styrene with dioctyl phthalate (DOP) addition. Glass‐transition temperatures of poly(MMA‐co‐MA) particles were strongly affected by the composition drift in the copolymer caused by their substantial difference in reactivity ratios. Incorporation of DOP in the copolymer particles does not significantly affect the glass‐transition temperature of MMA‐ or MA‐containing copolymer particles, but it does affect the St‐containing copolymer and particle morphology of the copolymers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3037–3050, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号