首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
As compared to classical chemical fixation, the physical immobilization of ultrastructures by fast-freeze fixation (FFF) and the subsequent exchange of water in its solid state by freeze substitution (FS) improve the preparation procedure for immunogold labeling (IGL). FFF-FS results in a morphological preservation of unchallenged quality, as well as in a better preservation of antigenic reactivity, thus allowing remarkable precision of labeling on sections. However, FFF, particularly over a cooled metal plate, requires a heavy and expensive machine. It is not suitable for all biological specimens and in the best conditions, which remain difficult to standardize, the thickness of the well-preserved portion of the specimen does not exceed a few microns for compact tissues, and exceptionally 30-40 microns for isolated cells. The FS procedure is long and must be adjusted empirically for every new specimen and antigenic detection. The preservation of a given antigen's reactivity in the presence of fixative agents and embedding resins remains unpredictable. The action of fixative agents is different and milder in FS than when they are used classically in chemical fixation. By chance, one of the best FS procedures for the preservation of both ultrastructure and antigenicity appears to be by using acetone alone, together with a molecular sieve to improve the water exchange process. A large choice of embedding resins usually allows us to find a compromise between ultrastructural and antigenic preservation.  相似文献   

2.
We describe a novel technique for direct transfer of native proteins from unfixed frozen tissues sections to an immobilizing matrix, e.g., nitrocellulose, polyvinyliden difluoride, or positively charged nylon membranes. Proteins are directly blotted onto the membrane, providing optimal accessibility for molecular detection but retaining the anatomic localization at the cellular level. Within 10 min a maximum protein transfer is achieved independent of the protein molecular weight. The total protein bound was 80% of the maximal binding capacity of the blotting membrane and independent of the section thickness. These results indicate that the proteins that bind to the membrane originate from the cut cell monolayer that has direct contact with the blotting membrane. This in situ blotting method provides direct protein mapping from a single cell layer of a tissue section. The procedure includes cryosectioning at 20 microns and collecting sections on a dry blotting membrane at -20 degrees C. For protein transfer the blotted sections are thawed and incubated for 10 min with Tris buffer. After incubation the sections are removed from the membrane by high-pressure spray. The blotted membranes can be subjected to several detection assays. In the present study the presence of several proteins was demonstrated in brain and thymus by immunochemical and enzyme histochemical procedures.  相似文献   

3.
BACKGROUND: Because of the limited availability of autologous tissue, stored allograft is commonly used. Before grafting, bank tissue is subjected to chemical preservation procedures. This procedure is important to diminish antigenicity and to inactivate possible inherent viruses. The aim of this study was to determine the influence of different chemical preservation procedures like Cialit, Merthiolate, and formaldehyde on the presence of HIV DNA. METHODS: HIV-infected tissues were obtained from eight HIV-positive patients and examined using the polymerase chain reaction (PCR). RESULTS: After chemical treatment, we could observe the presence of HIV DNA in all examined tissues. CONCLUSIONS: The findings indicate the importance of the mandatory serological screening and selection in donor patients.  相似文献   

4.
Production of an infectious herpes simplex virus (HSV) particle requires sequential progression of maturing virions through a series of complex assembly events. Capsids must be constructed in the nucleus, packaged with the viral genome, and transported to the nuclear periphery. They then bud into the nuclear membrane to acquire an envelope, traffic through the cytoplasm, and are released from the cell. Most of these phenomena are very poorly defined, and no suitable model system has previously been available to facilitate molecular analyses of genomic DNA packaging, capsid envelopment, and intracellular virion trafficking. We report the development of such an assay system for HSV type 1 (HSV-1). Using a reversible temperature-sensitive mutation in capsid assembly, we have developed conditions in which an accumulated population of immature capsids can be rapidly, efficiently, and synchronously chased to maturity. By assaying synchronized scaffold cleavage, DNA packaging, and acquisition of infectivity, we have demonstrated the kinetics with which these events occur. Kinetic and morphological features of intranuclear and extranuclear virion trafficking have similarly been examined by indirect immunofluorescence microscopy and electron microscopy. This system should prove a generally useful tool for the molecular dissection of many late events in HSV-1 biogenesis.  相似文献   

5.
An eosin Y staining technique that permits detection of various proteins, including membrane sialoglycoproteins, in polyacrylamide gels is described. The sensitivity of the eosin Y staining method is comparable to silver staining. In addition, there is an added advantage of the antigenicity of the stained proteins being retained in a Western blot. Details of the procedure to obtain optimal staining results are described.  相似文献   

6.
Endocytosis-mediated recycling of plasma membrane is a critical vesicle trafficking step important in diverse biological processes. The membrane trafficking decisions and sorting events take place in a series of heterogeneous and highly dynamic organelles, the endosomes. Syntaxin 13, a recently discovered member of the syntaxin family, has been suggested to play a role in mediating endosomal trafficking. To better understand the function of syntaxin 13 we examined its intracellular distribution in nonpolarized cells. By confocal immunofluorescence and electron microscopy, syntaxin 13 is primarily found in tubular early and recycling endosomes, where it colocalizes with transferrin receptor. Additional labeling is also present in endosomal vacuoles, where it is often found in clathrin-coated membrane areas. Furthermore, anti-syntaxin 13 antibody inhibits transferrin receptor recycling in permeabilized PC12 cells. Immunoprecipitation of syntaxin 13 revealed that, in Triton X-100 extracts, syntaxin 13 is present in a complex(es) comprised of betaSNAP, VAMP 2/3, and SNAP-25. This complex(es) binds exogenously added alphaSNAP and NSF and dissociates in the presence of ATP, but not ATPgammaS. These results support a role for syntaxin 13 in membrane fusion events during the recycling of plasma membrane proteins.  相似文献   

7.
A role for dynamin in clathrin-mediated endocytosis is now well established. However, mammals express three closely related, tissue-specific dynamin isoforms, each with multiple splice variants. Thus, an important question is whether these isoforms and splice variants function in vesicle formation from distinct intracellular organelles. There are conflicting data as to a role for dynamin-2 in vesicle budding from the TGN. To resolve this issue, we compared the effects of overexpression of dominant-negative mutants of dynamin-1 (the neuronal isoform) and dynamin-2 (the ubiquitously expressed isoform) on endocytic and biosynthetic membrane trafficking in HeLa cells and polarized MDCK cells. Both dyn1(K44A) and dyn2(K44A) were potent inhibitors of receptor-mediated endocytosis; however neither mutant directly affected other membrane trafficking events, including transport mediated by four distinct classes of vesicles budding from the TGN. Dyn2(K44A) more potently inhibited receptor-mediated endocytosis than dyn1(K44A) in HeLa cells and at the basolateral surface of MDCK cells. In contrast, dyn1(K44A) more potently inhibited endocytosis at the apical surface of MDCK cells. The two dynamin isoforms have redundant functions in endocytic vesicle formation, but can be targeted to and function differentially at subdomains of the plasma membrane.  相似文献   

8.
The G protein-coupled thrombin receptor is activated by an irreversible proteolytic mechanism and, perhaps as a result, exhibits an unusual trafficking pattern in the cell. Naive receptors tonically cycle between the cell surface and a protected intracellular pool, whereas receptors cleaved and activated at the cell surface internalize and move to lysosomes. Toward understanding how these trafficking events are regulated, we examined a series of receptor mutants. A receptor with alanine substitutions at all potential phosphorylation sites in the cytoplasmic tail failed to display agonist-triggered internalization but, like wild type receptor, displayed robust signaling, tonic cycling, and localization to both the cell surface and an intracellular pool. A truncation mutant that lacked most of the cytoplasmic tail also signaled robustly, lacked phosphorylation, and was defective in agonist-triggered internalization. However, in contrast to the specific phosphorylation site mutant, the truncation mutant did not display tonic cycling and localized exclusively to the cell surface. An analysis of a series of truncation mutants localized residues important for receptor trafficking to a 10-amino acid stretch in its cytoplasmic tail. These data suggest that phosphorylation may trigger internalization of activated thrombin receptors but that a second phosphorylation-independent signal mediates tonic internalization of naive receptors. They further suggest that maintenance of the intracellular pool of naive thrombin receptors requires tonic receptor internalization.  相似文献   

9.
The effects of some alcohol and aldehyde containing fixatives on the antigenicity of human carbonic anhydrase isoenzyme C (HCA C) were tested in order to reveal the most suitable method for the immunohistochemical localization of this enzyme. The use of 2% and 4% paraformaldehyde or 2% glutaraldehyde solutions before immunoperoxidase (PAP) staining resulted in the loss of HCA C-specific reactivity in the surface epithelial cells of human appendicular and gastric mucosae, whereas the antigenic reactivity of HCA C was well retained in the parietal cells of gastric glands. In corresponding tissue sections fixed with one of the alcohol containing solutions (abs. methanol, methanol + chloroform 2:1 or Carnoy fluid) both the surface epithelial and parietal cells showed HCA C-specific immunostaining after the PAP procedure. In addition, the antigenicity of HCA C was found to be well preserved in some tubular cells of human kidney fixed in Carnoy fluid. The paraffin infiltration at relatively low temperature did not markedly affect the enzyme antigenicity. Fixation in Carnoy fluid coupled with paraffin embedding at 55-60 degrees C in vacuo was found to give the best preservation of the antigenicity of HCA C with good morphological integrity for light microscopical localization.  相似文献   

10.
Human thyroperoxidase (hTPO), a type I transmembrane heme containing glycoprotein, catalyzes iodide organification and thyroid hormone synthesis and plays a major role in thyroid autoimmunity. Whereas hormonosynthesis occurs at the apical membrane of thyroid cells, TPO localizes mainly in the perinuclear membrane and the endoplasmic reticulum. To establish the intracellular trafficking and the structural characteristics of hTPO in the various cell compartments, hTPO was stably expressed in the Chinese hamster ovary cell line, and its folding was studied with two monoclonal antibodies (mAbs): mAb 47, recognizing a linear epitope; and mAb 15, recognizing a conformational epitope present in the mature protein. The results show that only 15-20% of hTPO molecules were able to acquire a conformation suitable for the recognition by mAb 15. On the other hand, only a part (approximately 15%) of the latter were able to reach the plasma membrane. The hTPO, unable to fold correctly, was more rapidly degraded than that recognized by mAb 15 (half-time, 2 h vs. 7 h). Study of the carbohydrate content of hTPO showed that N-glycans with complex-type structure were found only on hTPO at the cell surface, whereas intracellular hTPO bore high-mannose-type structures. Taken together, these data demonstrate that the intracellular pool of enzyme is formed of newly synthesized molecules and is not caused by recycling of mature hTPO from the cell surface. Complete inhibition of hTPO N-glycosylation with tunicamycin led to a 95% decrease in hTPO at the plasma membrane and, thus, to a decrease in enzymatic activity at the cell surface, emphasizing the role of N-glycans in the intracellular trafficking of hTPO. However, inhibition of formation of complex-type structures with deoxymannojirimycin and of O-glycans with phenyl-alpha-GalNAc did not influence the intracellular trafficking and enzymatic activity of hTPO.  相似文献   

11.
Alveolar ridge preservation following tooth extraction is important when implant-supported oral rehabilitation is considered. The ability to maintain the ridge allows implant placement in an ideal position, fulfilling both functional and esthetic demands. A deproteinized bovine bone mineral (DBBM) was used as a socket site filler material to maintain ridge configuration, without applying an occlusive membrane. The material was grafted and packed onto the socket sites immediately after extractions, and subsequently primary soft tissue closure was attempted. The ridge healed for 9 months before the second surgical procedure, in which the implant was placed. New bone formation was observed in all histological specimens. DBBM particles adhered to a highly osteocyte-rich woven and lamellar-type bone. Clinically and histologically, this report demonstrated DBBM particles to be an effective biocompatible filler agent in extraction sockets for ridge preservation prior to titanium fixture implantation. Randomized controlled clinical trials are needed to fully evaluate the usefulness of this material in ridge preservation after tooth extraction.  相似文献   

12.
Meiotic cells monitor the status of the interhomolog recombination complex   总被引:5,自引:0,他引:5  
Cortical granule exocytosis is important for the block to polyspermy at fertilization in the eggs of most vertebrates and many invertebrates. Cortical granules are poised at the cell surface and exocytose in response to sperm stimulation. Following exocytosis, the cortical granule contents modify the extracellular environment of the egg, the major result of which is to block additional sperm binding. Here we show that proteins homologous to members of the SNARE hypothesis-a molecular model designed to explain the trafficking, docking, and exocytosis of vesicles in the secretory compartment-are present in eggs at the right time and place to be involved in the regulation of cortical granule exocytosis. Using polymerase chain reaction (PCR) screens we have found homologues of synaptobrevin/VAMP, syntaxin, synaptotagmin, and rab3. Antibodies generated to fusion proteins or to synthetic peptides encoded by the cloned cDNAs were used in an immunofluorescence assay to show that each of the cognate proteins are present in the cortex of the egg. A synaptobrevin/VAMP homologue appears to be specifically associated with the membrane of cortical granules before fertilization and, following cortical granule exocytosis, is incorporated into the plasma membrane of the zygote. A rab3 homologue is also associated with cortical granules specifically but, following fertilization, the protein reassociates with different, yet undefined, vesicles throughout the cytoplasm of the zygote. Homologues of synaptotagmin and syntaxin are also present at the egg cortex but, in contrast to rab3 and VAMP, appear to be associated with the plasma membrane. Following fertilization, syntaxin and tagmin remain associated with the plasma membrane and are more readily immunolabeled, presumably due to an increased accessibility of the antibodies to the target protein domains. We also show by immunoblotting experiments that the cognate proteins are of the sizes predicted for these homologues. These results suggest that at least some steps in the biology of cortical granules may be mediated by SNARE homologues, and this finding, along with the unique biology of cortical granules, should facilitate examination of specific events of the fertilization reaction and the mechanism of stimulus-dependent exocytosis.  相似文献   

13.
Intracellular membrane traffic is thought to be regulated in part by soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (SNAREs) through the formation of complexes between these proteins present on vesicle and target membranes. All known SNARE-mediated fusion events involve members of the syntaxin and vesicle-associated membrane protein families. The diversity of mammalian membrane compartments predicts the existence of a large number of different syntaxin and vesicle-associated membrane protein genes. To further investigate the spectrum of SNAREs and their roles in membrane trafficking we characterized three novel members of the syntaxin and SNAP-25 (synaptosome-associated protein of 25 kDa) subfamilies. The proteins are broadly expressed, suggesting a general role in vesicle trafficking, and localize to distinct membrane compartments. Syntaxin 8 co-localizes with markers of the endoplasmic reticulum. Syntaxin 17, a divergent member of the syntaxin family, partially overlaps with endoplasmic reticulum markers, and SNAP-29 is broadly localized on multiple membranes. SNAP-29 does not contain a predicted membrane anchor characteristic of other SNAREs. In vitro studies established that SNAP-29 is capable of binding to a broad range of syntaxins.  相似文献   

14.
Defective trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common cause of cystic fibrosis. In chloride-secreting epithelia, it is well established that CFTR localizes to intracellular organelles and to apical membranes. However, it is controversial whether secretagogues regulate the trafficking of CFTR. To investigate whether acute hormonal stimulation of chloride secretion is coupled to the trafficking of CFTR, we used the intact shark rectal gland, a model tissue in which salt secretion is dynamically regulated and both chloride secretion and cellular CFTR immunofluorescence can be quantified in parallel. In rectal glands perfused under basal conditions without secretagogues, Cl- secretion was 151+/-65 microeq/h/g. Vasoactive intestinal peptide (VIP), forskolin, and genistein led to 10-, 6-, and 4-fold increases in Cl- secretion. In basal glands, quantitative confocal microscopy revealed CFTR immunofluorescence extending from the apical membrane deeply into the cell (7.28+/-0.35 micron). During stimulation with secretagogues, apical extension of CFTR immunofluorescence into the cell was reduced significantly to 3.24+/-0.08 micron by VIP, 4.08+/-0.13 by forskolin, and 3.19+/-0.1 by genistein (P < 0.001). Moreover, the peak intensity of CFTR fluorescence shifted towards the apical membrane (peak fluorescence 2.5+/-0.13 micron basal vs. 1.51+/-0.06, 1.77+/-0.1, and 1.38+/-0.05 for VIP, forskolin, and genistein; all P < 0.001). The increase in both Cl- secretion and apical CFTR trafficking reversed to basal values after removal of VIP. These data provide the first quantitative morphological evidence for acute hormonal regulation of CFTR trafficking in an intact epithelial tissue.  相似文献   

15.
We have recently shown that actin and fimbrin are required for the internalization step of endocytosis in yeast. Using a yeast strain with a temperature-sensitive allele of CMD1, encoding calmodulin, we demonstrate that this protein is also required for this process. Calmodulin mutants that have lost their high-affinity calcium binding sites are, however, able to carry out endocytosis normally. A mutation in Myo2p, an unconventional myosin that is a possible target of calmodulin, did not inhibit endocytosis. The function of calmodulin in endocytosis seems to be specific among membrane trafficking events, because the calmodulin mutants are not defective for biogenesis of soluble vacuolar hydrolases nor invertase secretion. Calmodulin does not seem to play a major role in the post-internalization steps of the endocytic pathway in yeast.  相似文献   

16.
The new nonionic glycosidic surfactant N-octanoyl-beta-D-glucosylamine (NOGA, molar mass 305.37 g) was synthesized through an easy and efficient two-step procedure. Specifically, beta-D-glucosylamine was obtained by the replacement of the anomeric hydroxyl of D-glucose by an amino group which was then selectively acylated. NOGA was finally purified by silica gel column chromatography and recrystallization. This compound is stable and soluble in water and usual buffers up to 80 mM at 4 degrees C and up to 0.2 M at 37 degrees C. NOGA solutions are also characterized by a low ultraviolet light absorbance above 250 nm (epsilon 280 approximately 1.5 M-1 cm-1). Due to its very high critical micelle concentration (CMC = 80 mM, as determined by spectrofluorimetry), this surfactant may easily be removed from samples by dialysis or, to a lesser extent, by adsorption onto hydrophobic beads. Furthermore, NOGA is colorimetrically titrable by the ninhydrin method and its weak interference in protein determination by the bicinchoninic acid method is easy to overcome. This surfactant exhibits a good solubilizing power toward membrane proteins, with a marked selectivity for spiralin, a bacterial surface antigen. Protein extraction started below the CMC, but was much more effective above this concentration threshold. NADH oxidase activity, ligand binding by the glycine betaine-binding protein, and antigenicity of more than 20 membrane or soluble proteins were not altered by NOGA. Thus, owing to its extraction efficacy and mildness toward protein structure and activity, NOGA should prove useful for membrane studies and offers the additional advantage of being easy to synthesize at low cost.  相似文献   

17.
TolR is a 142-amino-acid protein required for the import of colicins and bacteriophage and for maintenance of cell envelope integrity. The topology of TolR in the inner membrane was analyzed by two methods. First, bacteria expressing a series of TolR-beta-galactosidase, TolR-alkaline phosphatase, and TolR-beta-lactamase fusions were assayed for the appropriate enzymatic activity. Second, the accessibility of TolR to proteinase K was determined in permeabilized cells and everted vesicles with an antibody elicited against the carboxyl-terminal 70% of TolR. The results are consistent with TolR spanning the inner membrane once via residues 23 to 43 and with the carboxyl-terminal moiety being exposed to the periplasm. Quantitative studies with the anti-TolR antibody indicated the presence of 2 x 10(3) to 3 x 10(3) TolR molecules per cell.  相似文献   

18.
Membrane fusion     
Common themes are emerging from the study of viral, cell-cell, intracellular, and liposome fusion. Viral and cellular membrane fusion events are mediated by fusion proteins or fusion machines. Viral fusion proteins share important characteristics, notably a fusion peptide within a transmembrane-anchored polypeptide chain. At least one protein involved in a cell-cell fusion reaction resembles viral fusion proteins. Components of intracellular fusion machines are utilized in multiple membrane trafficking events and are conserved through evolution. Fusion pores develop during and intracellular fusion events suggesting similar mechanisms for many, if not all, fusion events.  相似文献   

19.
We have utilized processing-defective derivatives of the outer membrane maltoporin, LamB, to study protein trafficking functions in the cell envelope of Escherichia coli. Our model proteins contain amino acid substitutions in the consensus site for cleavage by signal peptidase. As a result, the signal sequence is cleaved with reduced efficiency, effectively tethering the precursor protein to the inner membrane. These mutant porins are toxic when secreted to the cell envelope. Furthermore, strains producing these proteins exhibit altered outer membrane permeability, suggesting that the toxicity stems from some perturbation of the cell envelope (J. H. Carlson and T. J. Silhavy, J. Bacteriol. 175:3327-3334, 1993). We have characterized a multicopy suppressor of the processing-defective porins that appears to act by a novel mechanism. Using fractionation experiments and conformation-specific antibodies, we found that the presence of this multicopy suppressor allowed the processing-defective LamB precursors to be folded and localized to the outer membrane. Analysis of the suppressor plasmid revealed that these effects are mediated by the presence of a truncated derivative of the polytopic inner membrane protein, TetA. The suppression mediated by TetA' is independent of the CpxA/CpxR regulon and the sigma E regulon, both of which are involved in regulating protein trafficking functions in the cell envelope.  相似文献   

20.
We investigated immunocytochemical staining of microtubular cytoskeleton of free nuclear endosperm, a tissue which is particularly difficult to fix. This tissue requires fixation for 45 hr to preserve the integrity of the microtubular network after paraformaldehyde based fixation. Low glutaraldehyde concentration in the fixative and the ethanol dehydration retains beta-tubulin antigenicity and the former improves preservation of tissue structure. An ethanol-free embedding method is recommended for immunocytochemical studies of ethanol sensitive target proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号