首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
云广±800 kV特高压直流输电线路耐雷性能研究   总被引:4,自引:2,他引:4  
国内外运行经验表明,雷击是造成输电线路跳闸的主要原因。基于杆塔的多波阻抗模型和基于先导发展的雷电屏蔽模型,分析了云广±800 kV特高压直流输电线路的反击、绕击耐雷性能及其影响因素。结果表明:随着杆塔高度的降低,冲击接地电阻的减小,线路反击性能增强;随着保护角的减小,地面倾角的减小,海拔的降低,线路雷电屏蔽性能增强;引起特高压输电线路雷击故障的主要因素是雷电绕击,建议特高压输电线路采用负保护角运行。  相似文献   

2.
宜华线±500 kV 直流输电线路具有塔身高、引雷面积大、易遭雷击的特点,需对其防雷性能进行科学的评估.文章采用改进的电气几何模型,计算了±500 kV 超高压直流输电线路的绕击闪络率,并利用 EMTP 建立并分析了反击耐雷性能研究模型,计算结果表明各种极线布置方式的绕击耐雷性能和反击耐雷性能存在差异,其中极线排列方式、地面倾角、保护角、杆塔高度和结构等因素对线路雷电性能有显著的影响  相似文献   

3.
在现有输电线路防雷研究成果的基础上,基于ATP-EMTP建立了计算±660 kV直流输电线路反击耐雷水平的模型,模型中杆塔采用多波阻抗模型,绝缘子闪络判据采用相交法,雷电波采用双指数波形,考虑导线电压的影响。所建模型经过验证后,首先分析了杆塔高度和接地电阻对输电线路反击耐雷水平的影响,然后以±660 kV输电线路典型塔形ZP2711为例分析了雷电反击对塔顶电位以及绝缘子两端电压的影响。研究表明,降低冲击接地电阻比降低杆塔高度能更有效地减小线路的反击耐雷水平,±660 kV线路在普通地形段的耐雷水平达232 kA,在大跨越段耐雷水平降低到175 kA,因此在大跨越段应加强接地电阻排查,以防由于接地电阻增大进一步降低线路的耐雷水平,从而引起反击闪络。  相似文献   

4.
云广特高压直流输电线路反击耐雷性能   总被引:10,自引:7,他引:3  
杨庆  赵杰  司马文霞  冯杰  袁涛 《高电压技术》2008,34(7):1330-1335
云广特高压直流输电线路将途经雷电活动强烈的区域,研究其反击耐雷性能对线路防雷设计有重要的意义,为此用ATP-EMTP软件建立了特高压直流输电线路反击耐雷性能数字仿真模型,它包括输电线路杆塔的多波阻抗模型、绝缘子的先导发展闪络模型和杆塔接地阻抗非线性模型。利用所建立的反击模型计算了云广特高压直流输电线路的反击耐雷性能。结果表明,特高压直流输电线路的反击耐雷水平较高,线路发生反击闪络的事故概率较低;随着杆塔高度的降低,接地阻抗的减小,线路绝缘水平的增强,云广±800kV特高压输电线路反击耐雷性能增强。  相似文献   

5.
±500kV三沪Ⅱ回同塔双回直流输电线路防雷分析   总被引:4,自引:3,他引:1  
谭进  张焕青  刘玉君  梁舰  唐程  刘刚 《高电压技术》2010,36(9):2173-2179
±500kV三沪Ⅱ回直流输电工程是我国首条同塔双回直流输电线路,同塔双回的特殊结构在节约输电线路走廊资源等方面有一定优势,但在防雷安全方面较单回直流输电线路有显著区别,极线布置和空气间隙直接影响到线路耐雷水平。为此,对±500kV三沪Ⅱ回直流输电线路的耐雷水平进行仿真计算,结果表明,线路的反击耐雷水平比较高;各种极线布置方式的反击耐雷水平和绕击耐雷水平存在差异;考虑导线-杆塔空气间隙后,线路的反击耐雷水平和绕击耐雷水平均有所下降,其中反击耐雷水平下降得更明显。对整条线路的雷击跳闸率进行估算,得出双正极在最上方的布置方式跳闸率最低。  相似文献   

6.
750kV单回和同杆双回输电线路反击耐雷性能   总被引:2,自引:0,他引:2  
利用ATP-EMTP仿真程序对单回和同塔双回750 kV输电线路典型杆塔的反击耐雷性能及其影响因素进行了仿真计算研究。研究中杆塔采用了多波阻抗模型,考虑了雷电波在杆塔中的传播速度、杆塔呼称高度及杆塔接地电阻等因素的影响,采用统计法确定750 kV超高压线路的反击耐雷性能。研究结果表明:杆塔中的传播速度影响不可忽略;随着杆塔高度的降低,冲击接地电阻的减小,线路反击性能增强;导线排列方式和档距的变化,对线路反击性能影响很小;对于ZB329和ZGU315型杆塔,仅其单回反击跳闸率都会高于预期雷击跳闸率,因此在建设750 kV输电线路时,需要认真计算研究输电线路的反击耐雷性能。  相似文献   

7.
云广±800kV特高压直流输电线路耐雷性能研究   总被引:2,自引:0,他引:2  
尚涛  杜忠东  张成巍  刘熙 《高电压技术》2008,34(10):2086-2089
云广±800 kV特高压直流输电线路工程是世界上第1个±800 kV、输电容量5 GW的特高压、大容量直流输电工程。所处地区属于雷击多发、易发区,防雷任务十分艰巨。为此结合特高压输电线路特点,建立了基于ATP-EMTP仿真软件的特高压直流输电线路反击仿真模型;依据改进电气几何模型,建立输电线路的屏蔽模型。计算结果表明:云广线路反击耐雷水平较高,反击闪络率较低;绕击闪络率较高,应该在云广线路中采用负的保护角;当杆塔升高到很高(>60 m),或地面倾角很大(>20°)时,应该考虑采用安装防绕击避雷针,架设耦合地线等防雷措施。  相似文献   

8.
500/220kV同塔四回线路的耐雷性能研究   总被引:7,自引:4,他引:3  
为准确评估500/220 kV同塔混压四回输电线路的耐雷性能,在采用改进电气几何模型(EGM)与电磁暂态程序(EMTP/ATP)计算其绕、反击跳闸率后分析了避雷线保护角、杆塔呼称高度、地面倾角等对5002、20 kV线路绕击耐雷性能的不同影响及杆塔呼称高度、接地电阻、耦合地线架设方式等对500、220 kV线路反击耐雷水平的不同影响。计算结果表明,同塔混压四回线路中不同电压等级线路防雷击侧重点不同,即500 kV线路绕击相对严重,220 kV线路反击相对严重。最后提出了改善线路雷电性能、降低雷击跳闸率的措施,在实际工程中,建议从降低杆塔呼称高度、采用负保护角以及架设耦合地线等方面综合考虑。  相似文献   

9.
分析了500 kV/220 kV同塔四回输电线路的绕击耐雷性能,采用电气几何模型法EGM来计算绕击跳闸率。采用暴露弧法计算每根导线绕击跳闸率,以暴露弧为0时对应的雷电流作为雷电的最大绕击电流,并分析了地面倾角、杆塔结构等因素对500 kV/220 kV同塔四回输电线路绕击跳闸率的影响。结果表明,雷电绕击多发生在500kV线路上;随着地面倾角增大,绕击跳闸率增大;绕击跳闸率随避雷线横担长度增长而减小,但对220 kV线路影响不大。通过详细分析和计算,对塔型设计方案进行了验证、比较。  相似文献   

10.
±800 kV同塔双回线路电压等级较高,且杆塔形状和杆塔尺寸较±500、±660 kV直流输电线路杆塔都有很大差别,因此其空气间隙的放电特性有不同特点。为选择合适的±800 kV同塔双回直流线路空气间隙距离值,对影响±800 kV同塔双回输电线路杆塔上、下层空气间隙冲击放电特性的因素进行了真型尺寸模拟试验研究。研究了下层塔身宽度对杆塔下层间隙操作冲击放电特性的影响,均压环尺寸对直流V串塔头空气间隙放电特性的影响,直流运行电压对塔头间隙冲击放电特性的影响,±800 kV同塔双回输电线路杆塔下横担对上层间隙操作冲击放电特性的影响,并校核了下横担到上导线距离减小后杆塔的耐雷性能。研究结果表明:原有的塔身宽度对间隙操作冲击放电影响的修正公式已不适用于±800 kV同塔双回直流线路塔头;均压环尺寸大小与放电电压正相关;导线直流电场对间隙的放电路径有明显影响,但对放电电压影响不大;杆塔上导线到下横担的间隙距离可适当减小,但间隙距离减小后,杆塔的反击耐雷性能及绕击耐雷性能都略有降低。该研究结果可用于指导±800 kV同塔双回输电工程的设计。  相似文献   

11.
500kV交流同塔四回线路的绕击耐雷性能   总被引:4,自引:2,他引:4  
为解决架设500kV同塔四回输电线路高杆塔时的雷害问题,运用改进的电气几何模型法及电磁暂态仿真程序计算了杆塔的绕击耐雷性能,得出了不同杆塔呼称高度、地面倾角、杆塔保护角和击距系数等参数时的绕击跳闸率并且详细分析了地面倾角、杆塔高度等参数对绕击跳闸率的影响。最后提出了改善500kV同塔四回绕击耐雷性能的措施,即在实际工程中,从减小杆塔高度、避雷线采用负保护角、增加绝缘子片数以及尽量避免在地面倾角较大的地点架设输电线路等几个方面综合考虑。  相似文献   

12.
分析了反击产生的原理,建立完整的反击计算模型,利用ATP-EMTP程序对山区220kV输电线路反击耐雷水平进行了仿真计算.结果表明:随着接地阻抗的减小,杆塔高度的降低,线路绝缘水平的增强,输电线路反击耐雷性能增强.  相似文献   

13.
王磊  肖山 《吉林电力》2010,38(1):26-29
分析了500kV/220kV同塔四回输电线路的绕击耐雷性能,采用电气几何模型法EGM来计算绕击跳闸率。采用暴露弧法计算每根导线绕击跳闸率,以暴露弧为0时对应的雷电流作为雷电的最大绕击电流,并分析了地面倾角、杆塔结构等因素对500kV/220kV同塔四回输电线路绕击跳闸率的影响。结果表明,雷电绕击多发生在500kV线路上;随着地面倾角增大,绕击跳闸率增大;绕击跳闸率随避雷线横担长度增长而减小,但对220kV线路影响不大。通过详细分析和计算,对塔型设计方案进行了验证、比较。  相似文献   

14.
500 kV高杆塔输电线路绕击跳闸率计算   总被引:1,自引:0,他引:1  
为研究500 kV高杆塔输电线路的绕击耐雷性能,采用改进的电气几何模型算法,通过暴露弧地面投影计算了线路的绕击跳闸率.比较了目前常用的击距公式和击距系数公式在计算高杆塔绕击耐雷水平时的适用性,选出了较为合适的公式.实例分析时,通过ATP仿真计算得到了各杆塔的绕击耐雷水平,然后分别计算了杆塔高度,地面倾角,避雷线保护角对线路绕击跳闸率的影响,结果表明:绕击跳闸率随着杆塔高度,地面倾角,保护角的增大而增大.适当降低杆塔高度,采用负保护角是提高绕击耐雷性能的有效方法.  相似文献   

15.
采用PSCAD/EMTDC建立了±800 k V/500 k V交直流混联输电线路反击耐雷水平仿真模型,讨论了杆塔接地电阻、绝缘子片数、雷电流波形、杆塔高度、避雷器变化对耐雷水平的影响,着重从分流系数的角度分析了接地电阻影响反击耐雷水平的原因,比较了±800 k V/500 k V交直流混联输电线路和500 k V同塔双回线路、±800 k V直流线路的反击耐雷水平。理论分析表明:在交直流混联线路中,±800 k V线路的反击耐雷水平是其交流500 k V线路的2倍以上;反击耐雷水平在接地电阻为某一定值时急剧降低;交直流混联线路中,交流线路和直流线路的反击耐雷水平分别大于单独500 k V同塔双回线路、±800 k V直流线路。  相似文献   

16.
±500kV江城直流输电线路防雷分析   总被引:1,自引:0,他引:1  
本文对±500 kV江城直流输电线路雷击跳闸情况和落雷密度进行统计分析,同时选取37基具有代表性的杆塔,采用ATP程序和电气几何模型法分别对杆塔的反击跳闸和绕击跳闸进行仿真计算,并就如何提高直流输电线路的防雷水平,提出了相应的措施。  相似文献   

17.
500kV同塔4回输电线路绕击的耐雷性能   总被引:5,自引:2,他引:3  
为研究同塔4回输电线路绕击耐雷性能,采用改进电气几何模型对其进行了分析。同塔4回输电线路导线数目多,避雷线需同时保护多相导线,因此必须通过确定雷电绕击的范围以得到绕击计算时所需的击距系数k、临界击距rsc、最大击距rsmax、年落雷次数N和雷击击距为r的概率等基本条件。在实际分析验证典型塔型的基础上建立了计算模型,改变相应参数得出绕击跳闸率n与杆塔高度hc、避雷线保护角θs、地面倾角θg、击距系数k等的对应变化关系。结果表明,n随hc增加、θs增大、θg增大、k减小而增大,采用负θs和降低hc是提高500kV同塔4回线路绕击耐雷性能的有效办法。  相似文献   

18.
本文对±500 kV江城直流输电线路雷击跳闸情况和落雷密度进行统计分析,同时选取37基具有代表性的杆塔,采用ATP程序和电气几何模型法分别对杆塔的反击跳闸和绕击跳闸进行仿真计算,并就如何提高直流输电线路的防雷水平,提出了相应的措施.  相似文献   

19.
输电线路覆冰是造成线路跳闸的重要原因之一。云南电网公司通过对500 k V输电线路进行地线绝缘化改造,实现了线路地线的直流融冰。由于地线绝缘化改造过程中,地线会通过地线绝缘子悬挂于杆塔塔头处,导致地线高度降低,进而使得输电线路的保护角增大,影响线路的绕击耐雷性能。通过EMTP-ATP平台计算5种不同塔型地线绝缘化改造前后的绕击耐雷水平,并通过电气几何模型(electric geometry model,EGM)计算这些塔型的绕击跳闸率。结果表明:地线绝缘化改造对线路绕击耐雷水平影响较小,但是对绕击跳闸率影响较大。  相似文献   

20.
±800kV换流站的雷电侵入波过电压仿真分析   总被引:4,自引:1,他引:3  
特高压直流换流站的绝缘配合对系统的安全运行和经济成本至关重要。为此,针对糯扎渡送电广东±800 kV特高压直流输电工程,采用PSCAD/EMTDC软件仿真分析受端换流站雷电侵入波过电压分布及其对设备雷电冲击绝缘水平的影响。建立了换流站各设备的雷电冲击暂态模型和交、直流侧进线段线路的频率相关模型,并选取合适的换流站运行方式进行仿真分析。采用先导发展法作为绝缘子串的闪络判据计算出交、直流侧输电线路进线段内反击和绕击耐雷水平,并由电气几何模型计算最大绕击电流。根据线路耐雷水平计算交、直流侧进线段内反击和绕击时雷电侵入波在换流站内设备上形成的最大过电压,校核设备雷电冲击绝缘水平,提出了改进措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号