首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A fundamental study is performed for local electrodeposition of copper utilizing thermal potential induced by Joule heating. The feasibility of the process for microelectronic applications is assessed by both experiment and mathematical modeling. The results of the investigation show that (i) a copper wire is coated under conditions of a.c. 50 Hz Joule heating in electrolyte containing 1.0 M CuSO4 and 0.5m H2SO4 with relatively high deposition rate of about 0.4 µm min–1, (ii) the Joule heating current should be kept below the boiling point of the solution to realize uniform deposition, and (iii) results of calculations by the present model based on one-dimensional heat conduction agree well with experimental results.Nomenclature D diameter of wire (m) - D 0 initial diameter of wire (m) - F Faraday constant (96 487 C mol1 ) - g acceleration due to gravity (9.807 m s2) - Gr Grashof number - H thickness of electrodeposit (m) - I current (A) - i 0 exchange current density (Am–2) - i n current density normal to electode (Am–2) - J current density (I/S) (Am–2) - L length of wire (m) - M molar concentration of electrolyte (mol dm–3 or M) - m atomic weight (kg mol–1) - n number of electrons participating - n unit normal vector to boundary - Nu Nusselt number - Pr Prandtl number - q heat per unit volume (W m–3) - R universal gas constant (8.314 3 J mol–1 K–1) - (r, z) cylindrical coordinate (m) - S cross section of wire (m2) - T temperature (K) - T 0 fixed temperature at both ends of wire (K) - T y temperature of electrolyte (K) - t time (s) - x longitudinal coordinate over wire (m) Greek symbols heat transfer coefficient (W m–2 K–1 - a,c anodic (a) and cathodic (c) transfer coefficient - thermal expansion coefficient of solution (K–1) - specific heat (J kg–1K–1) - potential (V) - e electrode potential (V) - thermal conductivity (W m–1 K–1 ) - y ionic conductivity of electrolyte (–1m–1) - e electronic conductivity of electrode (–1 m–1) - kinematic viscosity (m2s–1) - surface overpotential ( e – ) (V) - time constant (s) - density (kg m–3) This work was presented at The 7th International Microelectronics Conference, Yokohama, Japan (1992).  相似文献   

2.
A study has been made of the mass transfer characteristics of a reticulate, three-dimensional electrode, obtained by metallization of polyurethane foams. The assumed chemical model has been copper deposition from diluted solutions in 1 M H2SO4. Preliminary investigations of the performances of this electrode, assembled in a filter-press type cell, have given interesting results: with 0.01 M CuSO4 solutions the current density is 85 mA cm–2 when the flow rate is 14 cm s–1.List of symbols a area for unit volume (cm–1) - C copper concentration (mM cm–3) - c L copper concentration in cathode effluent (mM cm–3) - c 0 copper concentration of feed (mM cm–3) - C 0 0 initial copper concentration of feed (mM cm–3) - d pore diameter (cm) - D diffusion coefficient (cm2s–1) - F Faraday's constant (mcoul me q –1 ) - i electrolytic current density on diaphragm area basis (mA cm–2) - I overall current (mA) - K m mass transfer coefficient (cm s–1) - n number of electrons transferred in electrode reaction (meq mM–1) - P ] volumetric flux (cm3s–1) - Q total volume of solution (cm3) - (Re) Reynold's number - S section of electrode normal to the flux (cm2) - (Sc) Schmidt's number - (Sh) Sherwood's number - t time - T temperature - u linear velocity of solution (cm s–1) - V volume of electrode (cm3) - divergence operator - void fraction - u/K m a(cm) - electrical specific conductivity of electrolyte (–1 cm–1) - S potential of the solution (mV) - density of the solution (g cm–3) - v kinematic viscosity (cm2s–1)  相似文献   

3.
The structure of the electromagnetic field in detonation of a condensed explosive in a magnetic field is analyzed qualitatively. Propagation of a detonation wave in a magnetic field leads to generation of an electric current in explosion products. The physical reason for current generation is the freezing of the magnetic field into the conducting substance at the detonation front and subsequent extension of the substance and the field in the unloading wave. The structure of the current layer depends on the character of the boundary magnetic fields and conditions on the surface of initiation of the explosive. Detonation of the explosive in an external magnetic field B0 generates a system of two currents identical in magnitude but opposite in direction. The structure of the arising current and its absolute value are determined by the parameter R1 = 0 0D2t (0 is the magnetic permeability of vacuum, 0 is the electrical conductivity of detonation products, D is the detonationfront velocity, and t is the time). The value of the current increases with the detonationwave motion, and the linear current density is limited from above by 2B0/0. For R1 1, the electric field in the conducting layer is significantly nonuniform; for detonation products with a polytropic equation of state, a region of a constantdensity current is adjacent to thedetonation front. The results of this analysis are important for interpretation of experiments performed and development of new methods for studying the state of the substance in the detonation wave.  相似文献   

4.
A lithium–manganese oxide, Li x MnO2 (x=0.30.6), has been synthesized by heating a mixture (Li/Mn ratio=0.30.8) of electrolytic manganese dioxide (EMD) and LiNO3 in air at moderate temperature, 260 C. The formation of the Li–Mn–O phase was confirmed by X-ray diffraction, atomic absorption and electrochemical measurements. Electrochemical properties of the Li–Mn–O were examined in LiClO4-propylene carbonate electrolyte solution. About 0.3 Li in Li x MnO2 (x=0.30.6) was removed on initial charging, resulting in characteristic two discharge plateaus around 3.5V and 2.8V vs Li/Li+. The Li x MnO2 synthesized by heating at Li/Mn ratio=0.5 demonstrated higher discharge capacity, about 250mAh (g of oxide)–1 initially, and better cyclability as a positive electrode for lithium secondary battery use as compared to EMD.  相似文献   

5.
Experiments were conducted to study the effect of gas bubbles generated at platinum microelectrodes, on mass transfer at a series of copper strip segmented electrodes strategically located on both sides of microelectrodes in a vertical parallel-plate reactor. Mass transfer was measured in the absence and presence of gas bubbles, without and with superimposed liquid flow. Mass transfer results were compared, wherever possible, with available correlations for similar conditions, and found to be in good agreement. Mass transfer was observed to depend on whether one or all copper strip electrodes were switched on, due to dissipation of the concentration boundary layer in the interelectrode gaps. Experimental data show that mass transfer was significantly enhanced in the vicinity of gas generating microelectrodes, when there was forced flow of electrolyte. The increase in mass transfer coefficient was as much as fivefold. Since similar enhancement did not occur with quiescent liquid, the enhanced mass transfer was probably caused by a complex interplay of gas bubbles and forced flow.List of symbols A electrode area (cm2) - a constant in the correlation (k = aRe m , cm s–1) - C R, bulk concentration of the reactant in the bulk (mol–1 dm–3) - D diffusion coefficient (cm2 s–1) - d h hydraulic diameter of the reactor (cm) - F Faraday constant - Gr Grashof number =gL 3/2 (dimensionless) - g gravitational acceleration (cm s–2) - i g gas current density (A cm–2) - i L mass transfer limiting current density (A cm–2) - k mass transfer coefficient (cm s–1) - L characteristic length (cm) - m exponent in correlations - n number of electrons involved in overall electrode reaction, dimensionless - Re Reynolds number =Ud h–1 (dimensionless) - Sc Schmidt number = D –1 (dimensionless) - Sh Sherwood number =kLD –1 (dimensionless) - U mean bulk velocity (cm s–1) - x distance (cm) - N equivalent Nernst diffusion layer thickness (cm) - kinematic viscosity (cm2 s–1) - density difference = (L – ), (g cm–3) - L density of the liquid (g cm–3) - average density of the two-phase mixture (g cm–3) - void fraction (volumetric gas flow/gas and liquid flow)  相似文献   

6.
A survey is given of theoretical asymptotic bubble behaviour which is governed by heat or/and mass diffusion towards the bubble boundary. A model has been developed to describe the effect of turbulent forced flow on both bubble behaviour and ohmic resistance. A comparison with experimental results is also made.Nomenclature ga liquid thermal diffusivity (m2 s–1) - B width of electrode (m) - c liquid specific heat at constant pressure (J kg–1 K–1) - C 0 initial supersaturation of dissolved gas at the bubble wall (kg m–3) - d bubble density at electrode surface (m–2) - D diffusion coefficient of dissolved gas (m2 s–1) - D h –4S/Z, hydraulic diameter, withS being the cross-sectional area of the flow andZ being the wetted perimeter (m) - e base of natural logarithms, 2.718... - f local gas fraction - F Faraday constant (C kmol–1) - G evaporated mass diffusion fraction - h height from bottom of the electrode (m) - h w total heat transfer coefficient for electrode surface (J s–1 m–2 K–1) - h w,conv convective heat transfer coefficient for electrode surface (J s–1 m–2K–1) - H total height of electrode (m) - i electric current density (A m–2) - j, j * number - J modified Jakob number,C 0/ 2 - enthalpy of evaportion (J kg–1) - m density of activated nuclei generating bubbles at electrode surface (m–2) - n product of valency and number of equal ions forming one molecule; for hydrogenn=2, for oxygenn=4 - p pressure (N m–2) - p excess pressure (N m–2) - R gas constant (J kmol–1 K–1) - R 1 bubble departure radius (m) - R 0 equilibrium bubble radius (m) - R/R relative increase of ohmic resistance due to bubbles, R, in comparison to corresponding value,R, for pure electrolyte - Re Reynolds number,D h/ - Sc Schmidt number,/D - Sh Sherwood number - t time (s) - T absolute temperature (K) - T increase in temperature of liquid at bubble boundary with respect to original liquid in binary mixture (K) - gu solution flow velocity (m s–1) - x mass fraction of more volatile component in liquid at bubble boundary in binary mixture - x 0 mass fraction of more volatile component in original liquid in binary mixture - y mass fraction of more volatile component in vapour of binary mixture - contact angle - local thickness of one phase velocity boundary layer (m) - m local thickness of corresponding mass diffusion layer (m) - * local thickness of two-phase velocity boundary layer (m) - o initial liquid superheating (K) - constant in Henry's law (m2 s–2) - liquid kinematic viscosity (m2 s–1) - * bubble frequency at nucleus (s–1) - 1 liquid mass density (kg m–3) - 2 gas/vapour mass density (kg m–3) - surface tension (N m–1) Paper presented at the International Meeting on Electrolytic Bubbles organized by the Electrochemical Technology Group of the Society of Chemical Industry, and held at Imperial College, London, 13–14 September 1984.  相似文献   

7.
Sodium silicate glasses with a constant ratio of oxide concentrations (mol %) SiO2/Na2O = 2.4 and with copper ions introduced in the form of CuO (from 1 to 10 mol %) are studied by the EPR method. The shape and width of the EPR line of copper ions are analyzed, and the spin-Hamiltonian parameters g ||, g , A ||, and A are determined by simulating the EPR spectrum and comparing the simulated and experimental spectra. The EPR spectrum of copper ions (1 mol %) is characterized by the parameters g || = 2.35, g = 2.065, A || = 135 × 10–4 cm–1, A = 7 × 10–4 cm–1, and H = 25 G. An analysis of this spectrum shows that the nearest environment of the Cu2+ ion has the shape of an elongated octahedron. The EPR spectrum of the sodium silicate glass containing 10 mol % Cu is a superposition of the spectrum of an octahedral complex (g || = 2.35, g = 2.075, A || = 135 × 10–4 cm–1, H = 40 G) and the spectrum of a cluster (g || = 2.35, g = 2.15, A || = 135 × 10–4 cm–1, H = 50 G).  相似文献   

8.
Applications of magnetoelectrolysis   总被引:5,自引:0,他引:5  
A broad overview of research on the effects of imposed magnetic fields on electrolytic processes is given. As well as modelling of mass transfer in magnetoelectrolytic cells, the effect of magnetic fields on reaction kinetics is discussed. Interactions of an imposed magnetic field with cathodic crystallization and anodic dissolution behaviour of metals are also treated. These topics are described from a practical point of view.Nomenclature 1, 2 regression parameters (-) - B magnetic field flux density vector (T) - c concentration (mol m–3) - c bulk concentration (mol m–3) - D diffusion coefficient (m2 s–1) - d e diameter of rotating disc electrode (m) - E electric field strength vector (V m–1) - E i induced electric field strength vector (V m–1) - E g electrostatic field strength vector (V m–1) - F force vector (N) - F Faraday constant (C mol–1) - H magnetic field strength vector (A m–1) - i current density (A m–2) - i L limiting current density (A m–2) - i L 0 limiting current density without applied magnetic field (A m–2) - I current (A) - I L limiting current (A) - j current density vector (A m–2) - K reaction equilibrium constant - k reaction velocity constant - k b Boltzmann constant (J K–1) - m 1, m 2 regression parameters (-) - n charge transfer number (-) - q charge on a particle (C) - R gas constant (J mol–1 K–1) - T temperature (K) - t time (s) - V electrostatic potential (V) - v particle velocity vector (m s–1) Greek symbols transfer coefficient (–) - velocity gradient (s–1) - MS potential difference between metal phase and point just inside electrolyte phase (OHP) - diffusion layer thickness (m) - 0 hydrodynamic boundary layer thickness without applied magnetic field (m) - density (kg m–3) - electrolyte conductivity (–1 m–1) - magnetic permeability (V s A–1 m–1) - kinematic viscosity (m2 s–1) - vorticity  相似文献   

9.
Symmetric solid-electrolyte galvanic cells such as Pt/Ag Se/RbAg4+yI5–ySey/Ag Se/Pt, based on a continuous variation of the redox potential of the storage phase Ag Se with its composition, show considerable advantages over other types of cells, e.g. high accuracy, long charge-storage capability, effectively a double range of potential variation, and suppression of anodic polarization at the metalelectrolyte interface. The temperature characteristics as well as the overvoltage of this cell have been quantitatively determined and analysed. This cell can discharge in the temperature range –30 to 130° C with a current density up to 10 mA cm–2.  相似文献   

10.
The reaction of CpCo(PPh3)2, in which Cp= 5-cyclopentadienyl, with a -conjugated diacetylene, FcCC–o-C6H4–CCFc, in which Fc=ferrocenyl, was found to give a cyclobutadienecobalt mononuclear complex, { 4-C4Fc2(o-FcC6H4)2}CoCp (1), the crystal structure of which was determined by X-ray crystallography. In contrast, the reaction of CpCo(PPh3)2 with FcCC–p-C6H4–CCFc affords a cyclobutadienecobalt polymer, [p-C6H4( 4-C4Fc2)CoCp] n (2). The monocobalt complex 1 shows reversible 1e and 3e redox waves at E 0=0.116 and 0.350 V vs Ag/Ag+, and the polymer complex 2 shows two chemically reversible redox waves at E 0=0.143 and 0.219 V for the oxidation of the ferrocenyl moieties in the cyclic voltammogram. Crystal data are as follows: (1, C65H49CoFe4), triclinic, space group P\={1} (No. 2), a=13.547(4), b=16.197(4), c=11.763(4) Å, =106.79(2), =97.93(3), =97.12(3), V=2410(1) Å3, Z=2.  相似文献   

11.
The oxidative polycondenzation reaction conditions of N, N-bis (2-hydroxy-1-naphthalidene) thiosemicarbazone (HNTSC) using air oxygen, H2O2 and NaOCl were studied in an aqueous alkaline medium between 50–90°C. Oligo-N, N-bis (2-hydroxy-1-naphthalidene) thiosemicarbazone was characterized by 1H-NMR, FT-IR, UV-Vis, size exclusion chromatography (SEC) and elemental analysis techniques. Solubility testing of oligomer was investigated using organic solvents such as DMF, THF, DMSO, methanol, ethanol, CHCl3, CCl4, toluene acetonitrile, ethyl acetate, concentrated H2SO4 and an aqueous alkaline solution. Using NaOCl, H2O2 and air O2 oxidants, conversion to oligo-N, N-bis (2-hydroxy-1-naphthalidene) thiosemicarbazone (OHNTSC) of N, N-bis (2-hydroxy-1-naphthalidene) thiosemicarbazone was found to be 85, 80 and 76%, respectively, in an aqueous alkaline medium. According to the SEC analyses, the number-average molecular weight, weight-average molecular weight and polydispersity index values of OHNTSC synthesized were found to be 1050 gmol–1 1715 gmol–1 and 1.63, using NaOCl, and 2137, 2957 gmol–1 and 1.38, using air O2 and 2155 gmol–1 4164 gmol–1 and 1.93, using air H2O2, respectively. Also, TG analysis was shown to be unstable of oligo-N, N-bis (2-hydroxy-1-naphthalidene) thiosemicarbazone against thermo-oxidative decomposition. The weight loss of OHNTSC was found to be 97.29% at 900°C.  相似文献   

12.
Electrophoresis measurements on bubbles of electrogenerated hydrogen, oxygen and chlorine rising in a lateral electric field, are reported. In surfactant-free solutions, all bubbles displayed a point of zero charge of pH 2–3, i.e. they were negatively charged at pH > 3 and positively charged at pH < 2. The bubble diameter and electric field strength dependence of the electrophoretic mobilities, coupled with bubble rise rate measurements, indicated that the gas—aqueous solution interface was mobile, such that classical electrophoresis theory for solid particles could not be applied. Adsorption of anionic or cationic surfactants, in addition to modifying the apparent bubble charge, also tended to rigidify the bubble surface, so that at monolayer coverage the bubbles behaved as solid particles.Nomenclature c electrolyte concentration (mol m–3) - d bubble diameter (m) - E electric field (V m–1) - g gravitational constant (9.807 m s–2) - n 0 ionic number density (m–3) - q charge density [(, m) Cm–2] - Q charge [(, m) C] - r bubble radius (m) - R universal gas constant (8.314 J mol–1 K–1) - T absolute temperature (K) - u electrophoretic mobility (m2 s–1 V–1) - electrophoretic velocity (m s–1) - electrolyte permittivity (F m–1) - electrolyte viscosity (N m–2 s) - surface concentration (mol m–2) - k Debye-Huckel parameter (m–1) - electrolyte density (kg m–3) - gas density (kg m–3) - zeta potential (V) Paper presented at the International Meeting on Electrolytic Bubbles organized by the Electrochemical Technology Group of the Society of Chemical Industry, and held at Imperial College, London, 13–14 September 1984.  相似文献   

13.
The partial dissolution of zinc from electrodeposited Ni-Zn alloys (withX Zn 0 =22–87.3 mol %) was studied, in cold and nearly boiling 10m KOH. It was found that alloys withX Zn 0 22 mol % are not dissolved at all. The dissolved zinc fraction,A, increased rapidly with further increase in zinc content and after having passed a maximum withA=82–90% atX Zn 0 =55–58 mol % and a sharp minimum withA=52–65% atX Zn 0 =65–69 mol %, it asymptotically approached toA 100% atX Zn 0 100 mol %. The discontinuous dependence ofA againstX Zn 0 may be explained by differences in the crystallographic composition of the alloy deposits. Alloys withX Zn 0 <50–60 mol % can be allocated to solid solutions of zinc in the Ni matrix (-phase); the range of 50–60<X Zn 0 <70–80 mol % corresponds to the coexistence of + phases. The pure -phase exists within a narrow range atX Zn 0 =75–80 mol %. No zinc dissolution from Ni-Zn alloys withX Zn 0 22 mol % was explained by extremely low zinc activities in dilute solid solutions of the -phases shifting the Gibbs energy of the dissolution reaction to very low negative, or even to positive values. The dependence of the hydrogen and oxygen overvoltage atj=0.4 A cm–2 in 10m, KOH at 100°C on the original zinc contentX Zn 0 showed, in both cases, a clear minimum atX Zn 0 =75–78 mol %. This points to a practically pure -phase in the original Ni-Zn alloy with an approximate composition NiZn3.  相似文献   

14.
The paper deals with an experimental electrochemical study of mass transfer to porous nickel materials (felt, foams) in a small-scale laboratory cell functioning in a self-pumping mode. The liquid flow through a disc of the porous material is induced by the rotation of a solid circular disc. The cell is simple and is useful for laboratory studies of materials for porous electrodes and also for small-scale synthesis using such materials. The work examines separately the mass transfer to the rotating disc and to the porous disc. Empirical correlations of the experimental data are given.Nomenclature a e specific surface area (per unit of total volume of electrode) (m–1) - C 0 entering concentration of ferricyanide ions (mol m–3) - D molecular diffusion coefficient of ferricyanide (m2 s–1) - e thickness of the sheet of material (m) - F Faraday number (C mol–1) - g acceleration due to gravity (m s–2) - h distance between the discs (m) - I L limiting current (A) - 736-1 mean mass transfer coefficient (m s–1) - N roating velocity (rev min–1) - Q v volumetric electrolyte flow rate (m3 s–1) - R radius of the solid disc (m) - R c inner radius of the cell (m) - R i radius of the porous disc (m) - Re h Reynolds number based onh (=h2/) - Re R Reynolds number based onR (=R2/) - S c Schmidt number - Sh h Sherwood number based onh (=k d h/D) - Sh r Sherwood number based onR (=k d R/D) - mean electrolyte velocity (m s–1) - V electrode volume (m3) - X conversion - electrolyte density (kg m–3) - e number of electrons in the electrochemical reaction - kinematic viscosity (m2 s–1) - angular velocity (s–1) - 0 minimum angular velocity (s–1)  相似文献   

15.
The behaviour of regular packings constructed from corrugated metal sheets was investigated since they constitute an attractive packing material for the electrochemical absorption of gases. Mass transfer coefficients for the regular packing contained in a circular electrolytical cell were determined by the electrochemical method with simulation of the absorption process by bubbling nitrogen through the column. Correlations for the mass transfer rate as a function of fluid dynamic parameters and fluid properties are presented.List of symbols A electrode surface area (m2) - c 0 bulk concentration (mol m–3) - D diffusivity (m2 s–1) - E gas hold-up = volume fraction of gas - F Faraday constant (As mo–1) - Fr Froude number = Vs 2/gL - g gravitational acceleration (m s–2) - Ga Galileo number = L 3 g/v2 - I limiting current (A) - mass transfer coefficient (ms–1) - L characteristic length (m) - Re Reynolds number = V s L/ - Sc Schmidt number = /D - Sh Sherwood number = L/D - St Stanton number = /V S - V S superficial gas velocity (ms–1) - z valence change in electrochemical reaction - kinematic viscosity (m2 s–1)  相似文献   

16.
Preparation and characterization of doped manganese dioxides   总被引:2,自引:0,他引:2  
Doped manganese dioxide samples, containing cations of different valency, were prepared. The doped and undoped samples contained small amounts of physically held and chemically bound water. The X-ray diffraction patterns of the doped samples were very similar to the pattern of the undoped sample and they all belong to the-modification mixed with-MnO2 and-Mn2O3. The specific surface area of the samples measured by nitrogen adsorption and calculated by the s-method was in the range 2–5 m2g–1, indicating a lower porosity and a lower reactivity compared to the-forms. From measurements of pore radii the pores were classified as lying in the mesopore/macropore range (8–35 nm). A decrease in the mean pore radius was observed for the doped samples except for that doped with Li+ ions.  相似文献   

17.
Cathodic copper is easily contaminated by antimony in copper electrowinning from chloride solutions even when the antimony concentration in the electrolyte is as low as 2 p.p.m. Reduction potential measurements of copper and antimony species indicate that electrodeposition of antimony is unlikely unless copper concentration polarization exists near the cathode surface. A.c. impedance measurements and the effect of the rotation speed of the disc electrode indicate that the cathodic process mechanism for antimony is complicated. Both diffusion and chemical reactions occurring on the cathode surface supply the electrochemical active antimony species for the cathodic process. Reaction orders of the cathodic process with respect to antimony chloride, hydrogen and chloride ion concentrations are 2, –1 and –1, respectively. A proposed reaction mechanism for the process explains the experimental findings satisfactorily.List of symbols A surface area (cm2) - ao1, a1 constants - C concentration (mol cm–3) - D diffusion coefficient (cm2 s–1) - E potential (V) - F Faraday constant (Cmol–1) - f frequency (s–1) - I current (A) - i current density (A cm–2) - i d 8 limiting diffusion current density due to the diffusion of species O from bulk to the electrode surface and then the subsequent Reac tions 1 and 2 (A cm–2) - i d o limiting diffusion current density of species O (A CM–2) - K chemical equilibrium constant - k rate constant (s–1) - n number of electrons involved in the reaction - Q charge (C) - Q dl charge devoted to double layer capacitance (C) - Q f total charge in the forward step of potential step chronocoulometry (C) - Q r total charge in reverse step of potential step chronocoulometry (C) - t time (s) - sweep rate (V s–1) Greek symbols amount of species adsorbed per unit area (mol cm–2) - fraction of adsorption sites on the surface occupied by adsorbate. - ratio of rate constant defined in Equation 1 - c thickness of reaction layer (cm) - d thickness of diffusion layer (cm) - time (s) - modified time (s1/2) - kinematic viscosity (cm2 s–1) - angular velocity (s–1)  相似文献   

18.
When the impedance is measured on a battery, an inductive impedance is often observed in a high frequency range. This inductance is frequently related to the cell geometry and electrical leads. However, certain authors claimed that this inductance is due to the concentration distribution of reacting species through the pores of battery electrodes. Their argument is based on a paper in which a fundamental error was committed. Hence, the impedance is re-calculated on the basis of the same principle. The model shows that though the diffusion process plays an outstanding role, the overall reaction rate is never completely limited by this process. The faradaic impedance due to the concentration distribution is capacitive. Therefore, the inductive impedance observed on battery systems cannot be, by any means, attributed to the concentration distribution inside the pores. Little frequency distribution is found and the impedance is close to a semi-circle. Therefore depressed impedance diagrams in porous electrodes without forced convection cannot be ascribed to either a Warburg nor a Warburg-de Levie behaviour.Nomenclature A D¦C¦ (mole cm s–1) - B j+K¦C¦ (mole cm s–1) - b Tafel coefficient (V–1) - C(x) Concentration ofS in a pore at depthx (mole cm–3) - C 0 Concentration ofS in the solution bulk (mole cm–3) - C C(x) change under a voltage perturbation (mole cm–3) - ¦C¦ Amplitude of C (mole cm–3) - D Diffusion coefficient (cm2 s–1) - E Electrode potential (V) - E Small perturbation inE namely a sine-wave signal (V) - ¦E¦ Amplitude of E(V) - F Faraday constant (96500 A s mol–1) - F(x) Space separate variable forC - f Frequency in Hz (s–1) - g(x) KC(x)¦E¦(mole cm s–1) - I Apparent current density (A cm–2) - I st Steady-state current per unit surface of pore aperture (A cm–2) - j Imaginary unit [(–1)1/2] - K Pseudo-homogeneous rate constant (s–1) - K Potential derivative ofK, dK/dE (s–1 V–1) - K * Heterogeneous reaction rate constant (cm s–1) - L Pore depth (cm) - n Reaction order - P Reaction product - p Parameter forF(x), see Equation 13 - q Parameter forF(x), see Equation 13 - R e Electrolyte resistance (ohm cm) - R p Polarization resistance per unit surface of pore aperture (ohm cm2) - R t Charge transfer resistance per unit surface of pore aperture (ohm cm2) - S Reacting species - S a Total surface of pore apertures (cm2) - S 0 Geometrical surface area - S p Developed surface area of porous electrode per unit volume (cm2 cm–3) - s Concentration gradient (mole cm–3 cm–1) - t Time - U Ohmic drop - x Distance from pore aperture (cm) - Z Faradaic impedance per unit surface of pore aperture (ohm cm2) - Z x Local impedance per unit pore length (ohm cm3) - z Charge transfer number - Porosity - Thickness of Nernst diffusion layer - Penetration depth of reacting species (cm) - Penetration depth of a.c. signal determined by the potential distribution (cm) - Electrolyte (solution) resistivity (ohm cm) - 0 Flow of S at the pore aperture (mole cm2 s–1) - Angular freqeuncy of a.c. signal, 2f(s–1) - Integration constant  相似文献   

19.
ESR and XPS are used to study the Mo-based catalysts MoO3/K2CO3/SiO2 and K2MoO4/SiO2 prepared with two kinds of precursors, (NH4)6Mo7O244H2O and K2MoO4. The catalytic properties of the catalysts for methanethiol synthesis from high H2S-containing syngas are explored. The activity assay shows that the two catalysts have much the same activity for the reaction. By the ESR characterization of both functioning catalysts, the resonant signals of oxo-Mo(V) (g=1.93), thio-Mo(V) (g=1.98) and S (g=2.01 or 2.04) can be detected. In the catalyst MoO3/SiO2 modified with K2CO3, as increasing amounts of K2CO3 are added, the content of oxo-Mo(V) increases, but thio-Mo(V) decreases. The XPS characterization indicates that Mo has mixed valence states of Mo4+, Mo5+ and Mo6+, and that S includes three kinds of species: S2– (161.5 eV), [S–S]2– (162.5 eV) and S6+ (168.5 eV). Adding K2CO3 promoter to the catalysts, the Mo species of high valence state is easily sulphided and reduced to Mo2S and oxo-M(V), and the derivation of [S–S]2– and S2– species from S is promoted simultaneously. The methanethiol synthesis is favored if the mole ratio of (Mo6+ + Mo5+)/Mo4+ 0.8 and S2–/[S–S]2– is kept at a value of about 1.  相似文献   

20.
The thermodynamics of aqueous sulphur-water systems are summarized in the form of potential-pH diagrams, calculated from recently reported critically assessed standard Gibbs energies of formation of the species considered. However, there is convincing evidence from the literature that a value of pK a(HS) = 17–19 is appropriate, whereas a value of 13 is widely accepted; hence, the higher value of 19, corresponding to G f 0 (S2–) = 120.5 kJ mol–1 , was used in these calculations, rather than G f 0 (S2-) = 86.31 kJ mol–1 quoted in the main data source.Under ambient conditions, only – 2 (sulphide), 0 (elemental sulphur) and + 6 (sulphate) oxidation states are thermodynamically stable in water, which is predicted to be oxidized by peroxodisulphate (H2 S2 O8/SO 8 2– and peroxomonosulphate (HSO 5 /SO 5 2– ). However, when sulphate is excluded from the calculations to allow for the large energy of activation/slow kinetics of its formation from sulphide, then other sulphoxy species appear on the diagram for what is then a metastable system. Similarly, if all sulphoxy species (i.e. any species with oxidation states > 0) are excluded, then polysulphide ions (S n 2– , 2 n 5) have areas of predominance at high pH, each with a narrow potential window of predominance. Hence, this information is complemented with S n 2– /HS activity-potential diagrams at pH 9 and 14.Some species have no area of stability even on the metastable diagrams. Hence, potential-pH diagrams are also presented for the sulphite-dithionite system (excluding elemental sulphur), and that involving peroxomonosulphate (HSO 5 /SO 5 2– ) in place of peroxodisulphate (H2S2O8/SO 8 ¨– ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号