首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites of β-Ce2O3·11Al2O3 and tetragonal ZrO2 were fabricated by a reductive atmosphere sintering of mixed powders of CeO2, ZrO2 (2 mol% Y2O3), and Al2O3. The composites had microstructures composed of elongated grains of β-Ce2O3·11Al2O3 in a Y-TZP matrix. The β-Ce2O3·11Al2O3 decomposed to α-Al2O3 and CeO2 by annealing at 1500°C for 1 h in oxygen. The elongated single grain of β-Ce2O3·11Al2O3 divided into several grains of α-Al2O3 and ZrO2 doped with Y2O3 and CeO2. High-temperature bending strength of the oxygen-annealed α-Al2O3 composite was comparable to the β-Ce2O3·11Al2O3 composite before annealing.  相似文献   

2.
This work presents a novel method for preparing an Al2O3/YAG/ZrO2 ternary eutectic whereby combustion synthesis melt casting has been combined with the ultra-high gravity (UHG) technique. The fabricated product had a relative density of 99.3% of the theoretical one. Phase composition and microstructure analyses indicated that the application of UHG resulted in a metal-free ceramic microstructure with no porosity or microcracks. The microstructure comprises ZrO2 rods dispersed in Al2O3. The product had 17.82 GPa Vickers hardness and 5.51 MPa·m1/2 fracture toughness.  相似文献   

3.
The crystallization of MgO-Al2O3-SiO2-ZrO2 glasses at 1000°C was studied. Isothermal heat treatments of a cordierite-based glass (2MgO.2Al2O3.5SiO2= Mg2Al4Si5O18) with 7 wt% ZrO2 produced surface crystallization of α-cordierite and tetragonal ZrO2 ( t -ZrO2). These phases advanced into the glass by cocrystallization of t -ZrO2 rods in an α-cordierite matrix with a well-defined orientation relation. The t -ZrO2 rods were unstable with respect to diffusional breakup (a Rayleigh instability) and decomposed into rows of aligned ellipsoidal and spheroidal particles. The t -ZrO2 was very resistant to transformation to monoclinic symmetry. With a similar glass containing 15 wt% ZrO2, surface crystallization of α-cordierite and t -ZrO2 was accompanied by internal crystallization of t -ZrO2 dendrites. Transformation of the dendrites to mono-clinic symmetry was observed under some conditions.  相似文献   

4.
Electrical conduction in tetragonal β-Bi2O3 doped with Sb2O3 was investigated by measuring electrical conductivity, ionic transference number, and Seebeck coefficient. The β-Bi2O3 doped with 1 to 10 mol% Sb2O3 was stable up to 600°C and showed an oxygen ionic and electronic mixed conduction, where the electron conduction was predominant at low oxygen pressures. The oxygen-ion conductivity showed a maximum at 4 mol% Sb2O3, whereas the activation energy for the ionic conduction remained unchanged for 4 to 10 mol% Sb2O3-doped specimens. These results were interpreted in terms of the oxygen vacancy concentration and the distortion of the tetragonal structure. The electron conductivity and its oxygen pressure dependence decreased with increasing Sb2O3 content. The fact that Sb5+ is partially reduced by excess electrons in heavily doped β specimens at low oxygen pressures is explained.  相似文献   

5.
We report here the fabrication of transparent Sc2O3 ceramics via vacuum sintering. The starting Sc2O3 powders are pyrolyzed from a basic sulfate precursor (Sc(OH)2.6(SO4)0.2·H2O) precipitated from scandium sulfate solution with hexamethylenetetramine as the precipitant. Thermal decomposition behavior of the precursor is studied via differential thermal analysis/thermogravimetry, Fourier transform infrared spectroscopy, X-ray diffractometry, and elemental analysis. Sinterability of the Sc2O3 powders is studied via dilatometry. Microstructure evolution of the ceramic during sintering is investigated via field emission scanning electron microscopy. The best calcination temperature for the precursor is 1100°C, at which the resultant Sc2O3 powder is ultrafine (∼85 nm), well dispersed, and almost free from residual sulfur contamination. With this reactive powder, transparent Sc2O3 ceramics having an average grain size of ∼9 μm and showing a visible wavelength transmittance of ∼60–62% (∼76% of that of Sc2O3 single crystal) have been fabricated via vacuum sintering at a relatively low temperature of 1700°C for 4 h.  相似文献   

6.
Dense β-Si3N4 with various Y2O3/SiO2 additive ratios were fabricated by hot pressing and subsequent annealing. The thermal conductivity of the sintered bodies increased as the Y2O3/SiO2 ratio increased. The oxygen contents in the β-Si3N4 crystal lattice of these samples were determined using hot-gas extraction and electron spin resonance techniques. A good correlation between the lattice oxygen content and the thermal resistivity was observed. The relationship between the microstructure, grain-boundary phase, lattice oxygen content, and thermal conductivity of β-Si3N4 that was sintered at various Y2O3/SiO2 additive ratios has been clarified.  相似文献   

7.
In the ZrO2-Cr2O3 system, metastable t -ZrO2 solid solutions containing up to 11 mol% Cr2O3 crystallize at low temperatures from amorphous materials prepared by the hydrazine method. The lattice parameter c decreases linearly from 0.5149 to 0.5077 nm with increased Cr2O3 content, whereas the lattice parameter a is a constant value ( a = 0.5077 nm) regardless of the starting composition. At higher temperatures, transformation (decomposition) of the solid solutions proceeds in the following way: t (ss)→ t (ss) + m + Cr2O3→ m + Cr2O3. Above 11 mol% Cr2O3 addition, c-ZrO2 phases are formed in the presence of Cr2O3. The t -ZrO2 solid solution powders have been characterized for particle size, shape, and surface area. They consist of very fine particles (15–30 nm) showing thin platelike morphology. Dense ZrO2(3Y)-Cr2O3 composite ceramics (∼99.7% of theoretical) with an average grain size of 0.3 μm have been fabricated by hot isostatic pressing for 2 h at 1400°C and 196 MPa. Their fracture toughness increases with increased Cr2O3 content. The highest K Ic value of 9.5 MPa·;m1/2 is achieved in the composite ceramics containing 10 mol% Cr2O3.  相似文献   

8.
An experimental study has been conducted to evaluate the formation of nano α-Al2O3 under various conditions, such as different calcining temperatures and emulsion ratios of aqueous aluminum nitrate solutions and oleic acid with a high-speed stirring mixer. Four batches of the precursor powders were calcined at three different temperatures of 1000°, 1050°, and 1100°C for 2 h and a terminal product of nano α-Al2O3 powders was obtained. The products have been identified by X-ray diffraction (XRD), specific surface area measurement scanning electron microscope, and transmission electron microscope (TEM). The XRD results show that the phase of powders is determined to be α-Al2O3, indicating that the overall process has been effective. The optimum calcination temperature of the precursor powder for crystallization of nano α-Al2O3 was found to be 1000°C for 2 h. The TEM image indicates that the particle grains have a sub-spherical shape with a mean size of 50–100 nm.  相似文献   

9.
Aluminum nitride (AlN) powders were synthesized by gas reduction–nitridation of γ-Al2O3 using NH3 and C3H8 as the reactant gases. AlN was identified in the products synthesized at 1100°–1400°C for 120 min in the NH3–C3H8 gas flow confirming that AlN can be formed by the gas reduction–nitridation of γ-Al2O3. The products synthesized at 1100°C for 120 min contained unreacted γ-Al2O3. The 27A1 MAS NMR spectra show that Al–N bonding in the product increases with increasing reaction temperature, the tetrahedral AlO4 resonance decreasing prior to the disappearance of the octahedral AlO6 resonance. This suggests that the tetrahedral AlO4 sites of the γ-Al2O3 are preferentially nitrided than the AlO6 sites. AlN nanoparticles were directly formed from γ-Al2O3 at low temperature because of this preferred nitridation of AlO4 sites in the reactant. AlN nanoparticles are formed by gas reduction–nitridation of γ-Al2O3 not only because the reaction temperature is sufficiently low to restrict grain growth, but also because γ-Al2O3 contains both AlO4 and AlO6 sites, by contrast with α-Al2O3 which contains only AlO6.  相似文献   

10.
Subsolidus phase relationships in the Ga2O3–In2O3 system were studied by X-ray diffraction and electron probe microanalysis (EPMA) for the temperature range of 800°–1400°C. The solubility limit of In2O3 in the β-gallia structure decreases with increasing temperature from 44.1 ± 0.5 mol% at 1000°C to 41.4 ± 0.5 mol% at 1400°C. The solubility limit of Ga2O3 in cubic In2O3 increases with temperature from 4.X ± 0.5 mol% at 1000°C to 10.0 ± 0.5 mol% at 1400°C. The previously reported transparent conducting oxide phase in the Ga-In-O system cannot be GaInO3, which is not stable, but is likely the In-doped β-Ga2O3 solid solution.  相似文献   

11.
An epitaxial β-alumina crystal growth method was used to modify α-AI2O3 platelet surfaces before inclusion as a reinforcing phase in partially stabilized zirconia (3Y-TZP). The as-grown surface phase was Na-β"-AI2O3. This was converted to Ca-β"-AI2O3 by ion exchange, as the latter is more temperature-stable at composite sintering temperatures. The conditions of formation, thermal stability, and chemical compatibility of these interfacial phases were examined. α-AI2O3 platelets with Ca-β"-AI2O3 film were incorporated into 3Y-TZP. The β"-AI2O3/ZrO2 interface was found to promote platelet debonding and pullout, thus enhancing the α-AI2O3 platelet/crack interactions during the fracture process.  相似文献   

12.
Oxygen diffusion coefficients have been determined for polycrystalline samples of NiCr2O4 and α-Fe2O3 by exchange measurements with oxygen gas containing the stable isotope18O, using mass spectrometer analysis. Oxygen diffusion in NiCr2O4 can be represented by the equation D = 0.017 exp (-65,400/RT); oxygen diffusion in α-Fe2O3 can be represented by the equation D = 1 × 1011 exp (-146,000/RT). The large difference between D0 and activation energy for these materials suggests that different diffusion mechanisms are involved.  相似文献   

13.
SiO2/Fe2O3 mesoporous composites have been prepared with a nanoscale casting process using an activated carbon (AC) template in supercritical carbon dioxide (SC CO2). The composite precursor and acetone solvent (for Fe2O3 precursor) were dissolved in SC CO2, and then coated on the AC in the desired supercritical condition. After removal of the AC template by calcinations in air at 600°C, SiO2/Fe2O3 mesoporous composite were obtained. Temperature, pressure, and composite precursor ratio effects were studied. Scanning electron microscopy result shows that the porous structure of AC template had been well replicated by the composite product. Transmission electron micrograph indicates that nano iron oxides were well dispersed in the composite product.  相似文献   

14.
Cubic solid solutions in the Y2O3-Bi2O3 system with ∼25% Y2O3 undergo a transformation to a rhombohedral phase when annealed at temperatures ≤ 700°C. This transformation is composition-invariant and is thermally activated, and the product phase can propagate across matrix grain boundaries, indicating that there is no special crystallo-graphic orientation relationship between the product and the parent phases. Based on these observations, it is proposed that cubic → rhombohedral phase transformation in the Y2O3-Bi2O3 system is a massive transformation. Samples of composition 25% Y2O3-75% Bi2O3 with and without aliovalent dopants were annealed at temperatures ≤ 700°C for up to 10000 h. ZrO2 as a dopant suppressed while CaO and SrO as dopants enhanced the kinetics of phase transformation. The rate of cubic/rhombohedra1 interface migration (growth rate or interface velocity) was also similarly affected by the additions of dopants; ZrO2 suppressed while CaO enhanced the growth rate. Diffusion studies further showed that ZrO2 suppressed while CaO enhanced cation interdiffusion coefficient. These observations are rationalized on the premise that cation interstitials are more mobile compared to cation vacancies in cubic bismuth oxide. The maximum growth rate measured was ∼10−10 m/s, which is orders of magnitude smaller than typical growth rates measured in metallic alloys. This difference is explained in terms of substantially lower diffusion coefficients in these oxide systems compared to metallic alloys.  相似文献   

15.
The effect of B2O3 on the sintering temperature and microwave dielectric properties of Ba5Nb4O15 has been investigated using X-ray powder diffraction, scanning electron microscopy, and a network analyzer. Interactions between Ba5Nb4O15 and B2O3 led to formation of second phases, BaNb2O6 and BaB2O4. The addition of B2O3 to Ba5Nb4O15 resulted in lowering the sintering temperature from 1400° to 925°C. Low-fired Ba5Nb4O15 could be interpreted by measuring changes in the quality factor ( Q × f ), the relative dielectric constant (ɛr), and the temperature coefficient of resonant frequency (τf) as a function of B2O3 additions. More importantly, the formation of BaNb2O6 provided temperature compensation. The microwave dielectric properties of low-fired Ba5Nb4O15 had good dielectric properties: Q × f = 18700 GHz, ɛr= 39, and τf= 0 ppm/°C.  相似文献   

16.
Nanostructured Al2O3 powders have been synthesized by combustion of aluminum powder in a microwave oxygen plasma, and characterized by X-ray diffraction and electron microscopy. The main phase is γ-Al2O3, with a small amount of δ-Al2O3. The particles are truncated octahedral in shape, with mean particle sizes of 21–24 nm. The effect of reaction chamber pressure on the phase composition and the particle size was studied. The γ-alumina content increases and the mean particle size decreases with decreasing pressure. No α-Al2O3 appears in the final particles. Electron microscopy studies find that a particle may contain more than one phase.  相似文献   

17.
The effect of monovalent cation addition on the γ-Al2O3-to-α-Al2O3 phase transition was investigated by differential thermal analysis, powder X-ray diffractometry, and specific-surface-area measurements. The cations Li+, Na+, Ag+, K+, Rb+, and Cs+ were added by an impregnation method, using the appropriate nitrate solution. β-Al2O3 was the crystalline aluminate phase that formed by reaction between these additives and Al2O3 in the vicinity of the γ-to-α-Al2O3 transition temperature, with the exception of Li+. The transition temperature increased as the ionic radii of the additive increased. The change in specific surface area of these samples after heat treatment showed a trend similar to that of the phase-transition temperature. Thus, Cs+ was concluded to be the most effective of the present monovalent additives for enhancing the thermal stability of γ-Al2O3. Because the order of the phase-transition temperature coincided with that of the formation temperature of β-Al2O3 in these samples, suppression of ionic diffusion in γ-Al2O3 by the amorphous phase containing the added cations must have played an important role in retarding the transition to α-Al2O3. Larger cations suppressed the diffusion reaction more effectively.  相似文献   

18.
Previous studies on glass formation involving GeO2 with Bi2O3, TI2O, and PbO were extended by the use of Sb2O3. Wide areas of glass formation occur in the systems GeO2-PbO-Sb2O3 and GeO2-Bi2O3-Sb2O3 at all but the lowest GeO2 contents; the region of single-phase glasses in the system GeO2-Tl2O-Sb2O3 is severely restricted. Glasses were examined by powder X-ray diffraction, differential thermal analysis, thermomechanical analysis, and Archimedes'technique to obtain glass transition and crystallization exotherm temperatures, thermal expansion coefficients, and densities; these properties are presented in diagrams for the GeO2-Sb2O3 binary and for two ternary systems. Based on calculated values of Δo,the waveleneth for zero material dispersion. and dM/dΔ . the material disiersion slope at Δo, compositions in these systems may be useful for the construction of ultralow-loss optical waveguides in the 3 to 4 μm region.  相似文献   

19.
Novel microcomposite powders, consisting of inert cores (αAL-Al2O3) surrounded by reactive cement-based coatings (CaAl2O4), were synthesized by a modified Pechini process. The evolution of the crystalline CaAl2O4 phase during calcination was studied using multiple analytical techniques, including DRIFTS,13C and 27AlMAS FT-NMR, and XRD, for both pure CaAl2O4 and CaAl2O4-coated Al2O3 precursor powders. In both powders, decomposition proceeded via hydrocarbon chain scission and removal of ester groups at low temperatures ( T < 450°C), followed by the formation of inorganic carbonates at higher temperatures ( T > 450°C). These decomposition processes were accelerated by the underlying Al2O3 cores. Transmission electron microscopy (TEM) of the fully calcined powders showed that the inert αAL-Al2O3 particles were surrounded by relatively uniform CaAl2O4 coatings ranging in thickness from approximately 10 to 100 nm.  相似文献   

20.
A novel porous Yb4Si2O7N2 material with uniform open-cell network structure was fabricated from the reaction between Si3N4, Yb2O3, and SiO2. The formation of Yb4Si2O7N2 during heating was studied using X-ray diffractometry. The porous structure was characterized using scanning electron microscopy and mercury porosimeter. It is shown that the formation of Yb4Si2O7N2 phase starts at ∼1150°C and completes at 1350°C for 4 h, accompanied by the development of open-cell network structure. The necks between Yb4Si2O7N2 particles become much thicker with increasing temperature because of the coarsening of Yb4Si2O7N2 particles, thus leading to a uniform three-dimensional network structure. Furthermore, the pore size can be well controlled by adjusting reacting temperature and altering atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号