首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
A three-dimensional optical analysis of two dielectric, non-imaging concentrating covers for building integrated photovoltaics shows that an asymmetric concentrator is more suitable for use at building facades. For a wide range of solar incidence angles, optical efficiencies are over 90% for both concentrators. The optimum collection tilt angle for two different latitudes and the monthly and annual collected solar energy for both concentrators are predicted and compared to flat photovoltaic covers of the same photovoltaic and aperture area. Employing high transmittance materials for dielectric concentrating covers enables such refractive systems to achieve high solar energy acceptance thus requiring less photovoltaic material thereby reducing initial capital cost.  相似文献   

2.
Compound parabolic concentrator (CPC) type collectors have been viewed as the optimal design for totally stationary concentrators. However the CPC is ideal only for uniform incident solar flux averaged over the energy collection period. The actual yearly-averaged incident flux map turns out to be highly non-uniform, as a function of projected incidence angle, which implies that concentration can be increased markedly if optical collection efficiency is compromised. The question then becomes: what concentrator angular acceptance function is best matched to nature's radiation flux input, and how much energy can such a concentrator deliver? The recently-invented tailored edge-ray concentrator (TERC) approach could be used to determine optimal reflector contours, given the optimal acceptance angle function. We demonstrate that totally stationary TERCs can have around three times the geometric concentration of corresponding optimized stationary CPCs, with greater energy delivery per absorber area, in particular for applications that are currently being considered for stationary evacuated concentrators with the latest low-emissivity selective coatings, e.g. solar-driven double-stage absorption chillers (at around 170°C) and solar thermal power generation (at around 250°C).  相似文献   

3.
The Monte Carlo ray-tracing method is applied and coupled with optical properties to predict the radiation performance of solar concentrator/cavity receiver systems. Several different cavity geometries are compared on the radiation performance. A flux density distribution measurement system for dish parabolic concentrators is developed. The contours of the flux distribution for target placements at different distances from the dish vertex of a solar concentrator are taken by using an indirect method with a Lambert and a charge coupled device (CCD) camera. Further, the measured flux distributions are compared with a Monte Carlo-predicted distribution. The results can be a valuable reference for the design and assemblage of the solar collector system.  相似文献   

4.
Different simulation models for solar concentrators were developed to obtain the irradiance distribution on the absorber. Usually these optical simulations were valid only for a particular concentrator. Other simulations adequate for different concentrator shapes are based on ray tracing algorithms requiring high computing resources. An optimized reverse ray tracing model for flat mirror concentrators that allows to reduce the noise and the computing time necessary for such simulations is described.  相似文献   

5.
结合太阳能聚能器的光学特性,同时考虑了太阳不平行度、跟踪指向误差、镜面的反射误差以及焦面位置误差等误差因素,采用蒙特卡罗法对碟式抛物面太阳能聚能器的焦面特性进行了数值模拟分析,获得在等口径和等焦距条件下,边缘角对焦平面热流分布的影响,为碟式太阳能聚能器的设计和安装提供参考依据。  相似文献   

6.
The neodymium-containing phosphorus oxychloride liquid laser material is studied as an active medium for pumping by concentrated solar radiation at the focus of small-size parabolic-dish concentrators. The possibility of increase its efficiency by means of frequency-down-shifting elements of solar spectrum is examined by simulation calculations by Monte-Carlo and ray-tracing methods using. More than 40% efficiency increase is obtained.  相似文献   

7.
The development of parametric performance and cost models for various solar concentrators is discussed. The equations are derived in the context of an optimization scheme which can be applied to many different problems which arise when heat is generated by means of solar concentrators. Thus, while the results presented were developed for finding a minimum cost solar electric energy power plant, the method employed has been found to have general applicability. Sensitivity analysis of the subsytems is also discussed. Finally, numerous illustrative examples are presented.  相似文献   

8.
The large collection area of solar test facilities has potential for certain astronomical experiments. Since only nighttime hours are utilised there need be no conflict with the daytime solar research activity. Although solar concentrators are optically crude by conventional astronomical telescope standards, there are certain applications where the angular resolutions of 0.25° can be tolerated. These applications are discussed and some results from the nighttime use of large concentrators are presented.  相似文献   

9.
The performance of a solar radiation conversion system is affected by its orientation and tilt angle with the horizontal plane. This is because both of these parameters change the amount of solar energy received by the surface of solar system. Three mathematical models- the Isotropic, the Klucher and the Perez model for the point source with parameters optimized for a variety of climatic conditions have been employed to determine hourly and seasonal optimum tilt angles. Theoretical optimum tilt angles (10° for Mar–Sep and 40° for Oct–Feb) were compared with measured data for Nov 2007 to Oct 2008 at Dhaka. The anisotropic Perez model showed least rmse of 0.09 for monthly tilt factor estimation. This model was also used for theoretical study of solar radiation on variously oriented, single axis and double axis tracking surfaces.  相似文献   

10.
11.
In this paper the results of the influence of reflectance from flat plate solar radiation concentrators made of Al sheet and Al foil on energy efficiency of PV/Thermal collector are presented. The total reflectance from concentrators made of Al sheet and Al foil is almost the same, but specular reflectance which is bigger in concentrators made of Al foil results in increase of solar radiation intensity concentration factor. With the increase of solar radiation intensity concentration factor, total daily thermal and electrical energy generated by PV/Thermal collector with concentrators increase. In this work also optimal position of solar radiation concentrators made of Al sheet and Al foil and appropriate thermal and electrical efficiency of PV/Thermal collector have been determined. Total energy generated by PV/Thermal collector with concentrators made of Al foil in optimal position is higher than total energy generated by PV/Thermal collector with concentrators made of Al sheet.  相似文献   

12.
For non-tracking solar collection systems, the tilt angle has a predominant effect on the quantity of energy that the system can intercept. In the present work, a computational algorithm is developed for the calculation of the optimum tilt angle that would orient a non-tracking solar collection system (concentrating or non-concentrating) in its best position for the maximum average daily, monthly seasonal or yearly intercepted radiation. The optimum tilt angles were obtained for latitudes ranging from l0–50oN on monthly, seasonal and yearly bases. A case study is applied on Riyadh City (latitude 24.9°N) to investigate the sensitivity of intercepted radiation when the tilt angle varies from that of the optimum value. The results show that, on a monthly basis when the collector is mounted at the yearly optimum tilt angle, the loss of radiation intercepted is less than 10% as compared to the monthly optimum tilt angle. The optimum seasonal tilt angle reduces the incident radiation by less than 2% from that of the monthly optimum tilt angle.  相似文献   

13.
A somewhat new approach to the design of solar concentrators of Fresnel reflector geometry is outlined. the constituent mirror elements of the concentrator surface are characterised by three parameters, shift, tilt and width. the evaluation of these parameters and the concentration characteristics are investigated on the basis of a simple ray optical model.  相似文献   

14.
The presented low temperature solar thermal electric generation system mainly consists of compound parabolic concentrators (CPC) and the Organic Rankine Cycle (ORC) working with HCFC-123. A novel design is proposed to reduce heat transfer irreversibility between conduction oil and HCFC-123 in the heat exchangers while maintaining the stability of electricity output. Mathematical formulations are developed to study the heat transfer and energy conversion processes and the numerical simulation is carried out based on distributed parameters. Annual performances of the proposed system in different areas of Canberra, Singapore, Bombay, Lhasa, Sacramento and Berlin are simulated. The influences of the collector tilt angle adjustment, the connection between the heat exchangers and the CPC collectors, and the ORC evaporation temperature on the system performance are investigated. The results indicate that the three factors have a major impact on the annual electricity output and should be the key points of optimization. And the optimized system shows that: (1) The annual received direct irradiance can be significantly increased by two or three times optimal adjustments even when the CPC concentration ratio is smaller than 3.0. (2) Compared with the traditional single-stage collectors, two-stage collectors connected with the heat exchangers by two thermal oil cycles can improve the collector efficiency by 8.1–20.9% in the simultaneous processes of heat collection and power generation. (3) On the use of the market available collectors the optimal ORC evaporation temperatures in most of the simulated areas are around 120 °C.  相似文献   

15.
Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator.  相似文献   

16.
The paper suggests an energy model for the future world based on solar power engineering and new Russian energy technologies. Chlorine-free solar silicon technologies, stationary concentrators, solar modules with service lives doubled up to 40 years, matrix solar elements with an efficiency factor of 20% at a concentration of 5–500, and resonance waveguide methods for transmitting energy for solar energy systems are considered.  相似文献   

17.
We derive the theoretical upper limit for concentration of direct solar radiation at low latitudes with nontracking concentrators from the projected solid angle sampled by the apparent motion of the sun, for the case where the energy efficiency is referred to the energy incident on the entrance aperture. Based on the fact that the solar radiation is not uniformly distributed within this projected solid angle and that the apparent solar motion is known, we derive the optimal acceptance as a function of direction and time, which means rejecting the lower density radiation and switching off the device when losses would be higher than gains. Just as a device may gain concentration by rejecting radiation from certain directions, it can also gain by not operating at all, thus avoiding losses at certain times. Trough-type systems, which have translational symmetry, cannot be ideal nontracking concentrators, but for low losses they perform only slightly worse than general three-dimensional concentrators.  相似文献   

18.
This paper briefly describes the different collectors used in solar photocatalysis for wastewater treatment and, based on prior experience, the main advantages and disadvantages of each. As the tubular-shape reactor configuration is the most appropriate for handling and pumping water, the compound parabolic collector (CPC) is proposed as an interesting combination of parabolic concentrators and flat static systems and constitutes a good option for solar photochemical applications. The design of compound parabolic concentrators for solar photocatalytic applications is described in detail and 25–50 mm is proposed as the optimum photoreactor diameter, based on the optical characteristics and optimum concentration of the two photocatalytic systems (TiO2 and photo-Fenton) that can be used with sunlight for wastewater treatment. It has been demonstrated that since aluminium is the only metal that is highly reflective in the ultraviolet spectrum of solar radiation, aluminium-based mirrors are the best option. But, especially when exposed to outdoor conditions, aluminium must be protected and, therefore, at the present time, anodised and electropolished aluminium surfaces are considered the most suitable solutions. As the photochemical reactor contain the working fluid, including the catalyst, it must transmit UV sunlight efficiently and be able to work under enough pressure to handle the high volumes resulting from the large number of collectors in an industrial treatment plant, only low-iron glass is proposed as feasible for constructing the photoreactor (collector absorbers). Finally, ray-tracing algorithm simulations are presented as a design tool for the optical configuration of a particular reactor, drawing conclusions for its improvement and assisting in final engineering decision-making.  相似文献   

19.
Air filled asymmetric compound parabolic photovoltaic concentrators (ACPPVC) have been studied using a comprehensive validated unified model for optics and heat transfer in line-axis solar energy systems. The heat transfer that occurs within the cavity of a single concentrator, multiple concentrators, the space between adjacent concentrators and in an air duct behind the photovoltaics was simulated and is presented. For a range of insolation intensities incident at the aperture cover the maximum PV cell operating temperatures are determined. From the simulations undertaken the effects on solar cell surface temperatures resulting from air flow in the air filled space at the front of the system and in the air duct to the rear of the solar cells are clearly evident.  相似文献   

20.
The work presents a model of equivalent medium that allows one to estimate the thermoelectric characteristics of nonuniform semiconductor materials. The model describes experimental results obtained on microgranular silicon and defines ways of achieving high values of thermoelectric Q factor in transformers of thermal energy based on granulated semiconductors in a temperature range that can be easily achieved using solar concentrators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号