首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laboratory experiments and modeling studies were performed to investigate the redox transformations of arsenic and iron in water treatment sludge during aging, and to evaluate the impact of those transformations on the leachability of arsenic determined with the U.S. EPA toxicity characteristic leaching procedure (TCLP). When the backwash suspension samples collected from a California surface water treatment plant were aged in closed containers for a few weeks, soluble arsenic increased from less than 5 microg/L to as high as 700 microg/L and then decreased dramatically because of biotic reduction of arsenate [As(V)], ferric oxyhydroxide, and sulfate. The experimental results and the thermodynamic models showed that arsenic mobility can be divided into three redox zones: (a) an adsorption zone at pe > 0, which is characterized by strong adsorption of As(V) on ferric oxyhydroxide; (b) a mobilization (transition) zone at -4.0 < pe < 0, where arsenic is released because of reduction of ferric oxyhydroxide to ferrous iron and As(V) to arsenite [As(III)]; and (c) a reductive fixation zone at pe < -4.0, where arsenic is immobilized by pyrite and other reduced solid phases. The TCLP substantially underestimated the leachability of arsenic in the anoxic sludge collected from sludge ponds because of the oxidation of Fe(II) and As(III) by oxygen. The leaching test should be performed in zero-headspace vessels or under nitrogen to minimize the transformations of the redox-sensitive chemical species.  相似文献   

2.
The toxicity characteristic leaching procedure (TCLP) and the synthetic precipitation leaching procedure (SPLP) were performed on commercially purchased samples of the waste-derived soil amendment marketed as Ironite. Ten samples of the 1-0-0 grade (the most widely available in Florida) were tested. Two samples of the 12-10-10 grade and three samples of the 6-2-1 grade (a liquid version) were tested as well. TCLP leachate concentrations from the 1-0-0 grade samples ranged from 5.0 to 8.0 mg L(-1) for lead and 2.2 to 4.8 mg L(-1) for arsenic. SPLP concentrations from the 1-0-0 samples ranged from 0.62 to 3.1 mg L(-1) for lead and 1.9 to 8.2 mg L(-1) for arsenic. All of the 1-0-0 grade samples exceeded the U.S. hazardous waste toxicity characteristic (TC) limit for lead (5 mg L(-1)), while five of the 10 SPLP samples exceeded the TC limit for arsenic (5 mg L(-1)). The greater arsenic leachability in the SPLP relative to the TCLP was determined to be a result of lower pH conditions in the SPLP. A composite sample of the 1-0-0 grade was found to leach much greater concentrations of both arsenic and lead using California's waste extraction test (WET). Lead leachate concentrations were much lower in the two 12-10-10 samples (0.03 mg L(-1) or less); arsenic concentrations in these leachates (both TCLP and SPLP) exceeded 5 mg L(-1). None of the 6-2-1 samples contained lead or arsenic above TC limits. An experiment performed on the 1-0-0 grade which examined leachability as a function of pH found that at pH values in the range of what is encountered in the human digestive system (pH 4.0 to 1.5) lead leached 2-36% of its initial content, and arsenic leached 1-6% of its initial content. A simple gastric acid leaching experiment found 83 and 37% of the lead and arsenic present to leach, respectively.  相似文献   

3.
Recent revision of the arsenic in drinking water standard will cause many utilities to implement removal technologies. Most of the affected utilities are expected to use adsorption onto solid media for arsenic removal. The arsenic-bearing solid residuals (ABSR) from adsorption processes are to be disposed of in nonhazardous landfills. The Toxicity Characteristic Leaching Procedure (TCLP) tests whether a waste is hazardous or nonhazardous; most solid residuals pass the TCLP. However, the TCLP poorly simulates the alkaline pH, low redox potential, biological activity, long retention time, and organic composition of mature landfills. These same conditions are likely to favor mobilization of arsenic from metal oxide sorbents. This study quantifies leaching of arsenic from Activated Alumina (AA) and Granular Ferric Hydroxide (GFH), two sorbents expected to be widely used for arsenic removal. The sorbents were subjected to the TCLP, the Waste Extraction Test (WET), an actual landfill leachate, and two synthetic leachate solutions. Up to tenfold greater arsenic concentration is extracted by an actual landfill leachate than by the TCLP. Equilibrium leachate concentrations are not achieved within 18 h (the TCLP duration) and an N2 headspace and end-over-end tumbling increase the rate of arsenic mobilization. However, tests with actual landfill leachate indicate the WET may also underestimate arsenic mobilization in landfills.  相似文献   

4.
Several recent investigations have shown encouraging potential for the removal of arsenic (As) from groundwater by granular zerovalent iron (Fe0). In contrast to previous studies conducted, we have investigated the applicability of this method and the nature of As bonding under conditions with dissolved sulfide. Three column tests were performed over the period of 1 year using solutions with either As(V) or As(II) (2-200 mg/L) in the input solution. Arsenic outflow concentrations decreased from initially 30-100 microg/L to concentrations of below 1 microg/L with time. XANES (X-ray absorptions near edge structure) and EXAFS (expanded X-ray absorption fine structure) spectra indicated that As in the solid phase is not only directly coordinated with oxygen, as is the case in adsorbed or coprecipitated arsenite and arsenate. Samples with high sulfur content showed additional bonding, for which Fourier transformations of EXAFS data exhibited a peak between 2.2 and 2.4 A. This bonding most likely originated from the direct coordination of sulfur or iron with As, which was incorporated in iron sulfides orfrom adsorbed thioarsenites. The formation of this sulfide bonding supports the removal of As by Fe0 because sulfide production by microbial sulfate reduction is ubiquitous in permeable reactive barriers composed of Fe0.  相似文献   

5.
The highly ordered mesoporous silica media, SBA-15, was synthesized and incorporated with iron, aluminum, and zinc oxides using an incipientwetness impregnation technique. Adsorption capacities and kinetics of metal-impregnated SBA-15 were compared with activated alumina which is widely used for arsenic removal. Media impregnated with 10% of aluminum by weight (designated to Al10SBA-15) had 1.9-2.7 times greater arsenate adsorption capacities in a wide range of initial arsenate concentrations and a 15 times greater initial sorption rate at pH 7.2 than activated alumina. By employing one- and two-site models, surface complexation modeling was conducted to investigate the relationship between the aluminum oxidation states in different media and adsorption behaviors shown by adsorption isotherms and kinetics since the oxidation phase of aluminum incorporated onto the surface of SBA-15 was Al-O, which has a lower oxidation state than activated alumina (Al2O3). Surface complexation modeling results for arsenate adsorption edges conducted with different pH indicated thatthe monodentate complex (SAsO(4)2-) was dominant in Al10SBA-15, while bidentate complexes (XHAsO4 and XAsO4-) were dominant in activated alumina at pH 7.2, respectively. In kinetic studies at pH 7.2 + 0.02, Al10SBA-15 had only a fast-rate step of initial adsorption, while activated alumina had fast- and slow-rate steps of arsenate adsorption. Therefore, it can be inferred that the monodentate arsenate complex, predominant in Al10SBA-15, leads to faster adsorption rates than bidentate arsenate complexes favored with activated alumina. An arsenate adsorption behavior and arsenate surface complexation were thought to be well explained by aluminum oxidation states and surface structural properties of media.  相似文献   

6.
Adsorptive removal of antiscalants offers a promising way to improve current reverse osmosis (RO) concentrate treatment processes and enables the reuse of the antiscalant in the RO desalination process. This work investigates the adsorption and desorption of the phosphonate antiscalant nitrilotris(methylenephosphonic acid) (NTMP) from RO membrane concentrate onto granular ferric hydroxide (GFH), a material that consists predominantly of akaganéite. The kinetics of the adsorption of NTMP onto GFH was predicted fairly well with two models that consider either combined film-pore or combined film-surface diffusion as the main mechanism for mass transport. It is also demonstrated that NTMP is preferentially adsorbed over sulfate by GFH at pH 7.85. The presence of calcium causes a transformation in the equilibrium adsorption isotherm from a Langmuir type to a Freundlich type with much higher adsorption capacities. Furthermore, calcium also increases the rate of adsorption substantially. GFH is reusable after regeneration with sodium hydroxide solution, indicating that NTMP can be potentially recovered from the RO concentrate. This work shows that GFH is a promising adsorbent for the removal and recovery of NTMP antiscalant from RO membrane concentrates.  相似文献   

7.
Granular activated carbon-based, iron-containing adsorbents (As-GAC) were developed for effective removal of arsenic from drinking water. Granular activated carbon (GAC) was used primarily as a supporting medium for ferric iron that was impregnated by ferrous chloride (FeCl2) treatment, followed by chemical oxidation. Sodium hypochlorite (NaClO) was the most effective oxidant, and carbons produced from steam activation of lignite were most suitable for iron impregnation and arsenic removal. Two As-GAC materials prepared by FeCl2 treatment (0.025 -0.40 M) of Dacro 20 x 50 and Dacro 20 x 40LI resulted in a maximum impregnated iron of 7.89% for Dacro 20 x 50 and 7.65% for Dacro 20 x 40Ll. Nitrogen adsorption-desorption analyses showed the BET specific surface area, total pore volume, porosity, and average mesoporous diameter all decreased with iron impregnation, indicating that some micropores were blocked. SEM studies with associated EDS indicated that the distribution of iron in the adsorbents was mainly on the edge of As-GAC in the low iron content (approximately 1% Fe) sample but extended to the center at the higher iron content (approximately 6% Fe). When the iron content was > approximately 7%, an iron ring formed at the edge of the GAC particles. No difference in X-ray diffraction patterns was observed between untreated GAC and the one with 4.12% iron, suggesting that the impregnated iron was predominantly in amorphous form. As-GAC could remove arsenic most efficiently when the iron content was approximately 6%; further increases of iron decreased arsenic adsorption. The removal of arsenate occurred in a wide range of pH as examined from 4.4 to 11, but efficiency was decreased when pH was higher than 9.0. The presence of phosphate and silicate could significantly decrease arsenate removal at pH > 8.5, while the effects of sulfate, chloride, and fluoride were minimal. Column studies showed that both As(V) and As(III) could be removed to below 10 microg/L within 6000 empty bed volume when the groundwater containing approximately 50 microg/L of arsenic was treated.  相似文献   

8.
This paper presents the modeling of anion leaching (SO4(2-) and CrO4(2-)) from refinery oily sludge and ash produced by incineration of oily sludge, stabilized/solidified (s/s) with two types of cement, 142.5 and 1142.5. Anion leaching was examined using a sequential toxicity characteristic leaching procedure (TCLP) test. To elucidate the mechanisms of sulfate and chromate leaching, we employed Visual MINTEQ, incorporating a multiple-problem setup. Specifically, 10-14 different problems, depending on the pH range of the leachates, were connected together in the same run. Each problem corresponded to one pH value of the leachate and the model run covered the pH range of the five sequential TCLP extractions. This modeling approach was tested using chemical equilibrium with or without sorption onto ferrihydrite. Good agreement between experimental and modeling results was obtained for sulfate leaching from solidified oily sludge and ash, considering surface complexation onto ferrihydrite on top of chemical equilibrium controlled by gypsum at pH <11 and ettringite at pH >11. Chromate leaching was described by chemical equilibrium, controlled by CaCrO4(s) (at pH <11) and Cr(VI)ettringite (at pH >11).  相似文献   

9.
This paper presents the leaching behavior of anions (SO4(2-) and CrO4(2-)) from refinery oily sludge and ash produced by incineration of oily sludge, stabilized/solidified (s/s) with two types of cement, 142.5 and 1142.5. Anion leaching was examined using a 5-step sequential toxicity characteristic leaching procedure (TCLP) test. A single TCLP extraction resulted in limited sulfate release (<50 mg/L) for s/s ash and significant sulfate release (<850 mg/L) for s/s oily sludge. Chromate release was <1 mg/L for s/s ash and nondetectable for s/s oily sludge. The sequential TCLP tests resulted in increased leaching for both sulfate and chromate. In general,the increase of liquid-to-solid ratio (TCLP leachant-to-waste ratio) resulted in increased leaching of sulfate from solidified samples compared to untreated oily sludge, ash and cement. In contrast, chromate leaching decreased by s/s process. A qualitatively similar leaching behavior for SO4(2-), even for radically different wastes such as oily sludge and ash, solidified with two different types of cement was observed.  相似文献   

10.
Arsenic is of concern in water treatment because of its health effects. This research focused on incorporating hydrous ferric oxide (HFO) into granular activated carbon (GAC) for the purpose of arsenic removal. Iron was incorporated into GAC via incipient wetness impregnation and cured at temperatures ranging from 60 to 90 degrees C. X-ray diffractions and arsenic sorption as a function of pH were conducted to investigate the effect of temperature on final iron oxide (hydroxide) and their arsenic removal capabilities. Results revealed that when curing at 60 degrees C, the procedure successfully created HFO in the pores of GAC, whereas at temperatures of 80 and 90 degrees C, the impregnated iron oxide manifested a more crystalline form. In the column tests using synthetic water, the HFO-loaded GAC prepared at 60 degrees C also showed higher sorption capacities than media cured at higher temperatures. These results indicated that the adsorption capacity for arsenic was closely related to the form of iron (hydr)oxide for a given iron content For the column test using a natural groundwater, HFO-loaded GAC (Fe, 11.7%) showed an arsenic sorption capacity of 26 mg As/g when the influent contained 300 microg/L As. Thus, the preloading of HFO into a stable GAC media offered the opportunity to employ fixed carbon bed reactors in water treatment plants or point-of-use filters for arsenic removal.  相似文献   

11.
Uranium binding to bone charcoal and bone meal apatite materials was investigated using U L(III)-edge EXAFS spectroscopy and synchrotron source XRD measurements of laboratory batch preparations in the absence and presence of dissolved carbonate. Pelletized bone char apatite recovered from a permeable reactive barrier (PRB) at Fry Canyon, UT, was also studied. EXAFS analyses indicate that U(VI) sorption in the absence of dissolved carbonate occurred by surface complexation of U(VI) for sorbed concentrations < or = 5500 microg U(VI)/g for all materials with the exception of crushed bone char pellets. Either a split or a disordered equatorial oxygen shell was observed, consistent with complexation of uranyl by the apatite surface. A second shell of atoms at a distance of 2.9 A was required to fit the spectra of samples prepared in the presence of dissolved carbonate (4.8 mM total) and is interpreted as formation of ternary carbonate complexes with sorbed U(VI). A U-P distance at 3.5-3.6 A was found for most samples under conditions where uranyl phosphate phases did not form, which is consistent with monodentate coordination of uranyl by phosphate groups in the apatite surface. At sorbed concentrations > or = 5500 microg U(VI)/g in the absence of dissolved carbonate, formation of the uranyl phosphate solid phase, chernikovite, was observed. The presence of dissolved carbonate (4.8 mM total) suppressed the formation of chernikovite, which was not detected even with sorbed U(VI) up to 12,300 microg U(VI)/g in batch samples of bone meal, bone charcoal, and reagent-grade hydroxyapatite. EXAFS spectra of bone char samples recovered from the Fry Canyon PRB were comparable to laboratory samples in the presence of dissolved carbonate where U(VI) sorption occurred by surface complexation. Our findings demonstrate that uranium uptake by bone apatite will probably occur by surface complexation instead of precipitation of uranyl phosphate phases under the groundwater conditions found at many U-contaminated sites.  相似文献   

12.
A simple arsenic removal system was used in Bangladesh by six households for 4 months to treat well water containing 190-750 microg/L As as well as 0.4-20 mg/L Fe and 0.2-1.9 mg/L P. The system removes As from a 16-L batch of water in a bucket by filtration through a sand bed following the addition of about 1.5 g of ferric sulfate and 0.5 g of calcium hypochlorite. Arsenic concentrations in all but 1 of 72 samples of treated water were below the Bangladesh drinking water standard of 50 microg/L for As. Approximately half of the samples also met the World Health Organization (WHO) guideline of 10 microg/L. At the two wells that did not meet the WHO guideline, observations were confirmed by additional experiments in one case ([P] = 1.9 mg/L) but not in the other, suggesting that the latter household was probably not following the instructions. Observed residual As levels are consistent with predictions from a surface complexation model only if the site density is increased to 2 mol/mol of Fe. With the exception of Mn, the average concentrations of other inorganic constituents of health concern (Cr, Ni, Cu, Se, Mo, Cd, Sb, Ba, Hg, Pb, and U) in treated water were below their respective WHO guideline for drinking water.  相似文献   

13.
The mechanisms of the uranium(VI) sorption on schwertmannite and goethite in acid sulfate-rich solutions were studied by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. The samples were prepared under N2 atmosphere and initial uranium(VI) concentrations of 1 x 10(-5) (pH 6.5) to 5 x 10(-5) M (pH 4.2). The ionic strength was adjusted using 0.01 M Na2SO4 or 0.01 M NaClO4, respectively. The EXAFS structural parameters for uranium(VI) sorbed on goethite in sulfate-rich, acid and near-neutral solutions indicate that uranium(VI) forms an inner-sphere, mononuclear, bidentate surface complex. This complex is characterized by a uranium-ferric-iron distance of approximately 3.45 A. Uranium(VI) sorbed onto schwertmannite in acid and sulfate-rich solution is coordinated to one or two sulfate molecules with a uranium-sulfur distance of 3.67 A. The EXAFS results indicate formation of binuclear, bidentate surface complexes and partly of mononuclear, monodentate surface complexes coordinated to the structural sulfate of schwertmannite. The formation of ternary uranium(VI)-sulfate surface complexes could not be excluded because of the uncertainty in assigning the sulfate either to the bulk structure or to adsorption reactions. The uranium(VI) adsorption onto schwertmannite in perchlorate solution occurs predominantly as a mononuclear, bidentate complexation with ferric iron due to the release of sulfate from the substrate.  相似文献   

14.
Effects of dissolved carbonate on arsenate [As(V)] reactivity and surface speciation at the hematite-water interface were studied as a function of pH and two different partial pressures of carbon dioxide gas [P(CO2) = 10(-3.5) atm and approximately 0; CO2-free argon (Ar)] using adsorption kinetics, pseudo-equilibrium adsorption/titration experiments, extended X-ray absorption fine structure spectroscopic (EXAFS) analyses, and surface complexation modeling. Different adsorbed carbonate concentrations, due to the two different atmospheric systems, resulted in an enhanced and/or suppressed extent of As(V) adsorption. As(V) adsorption kinetics [4 g L(-1), [As(V)]0 = 1.5 mM and I = 0.01 M NaCl] showed carbonate-enhanced As(V) uptake in the air-equilibrated systems at pH 4 and 6 and at pH 8 after 3 h of reaction. Suppressed As(V) adsorption was observed in the air-equilibrated system in the early stages of the reaction at pH 8. In the pseudo-equilibrium adsorption experiments [1 g L(-1), [As(V)]0 = 0.5 mM and I = 0.01 M NaCI], in which each pH value was held constant by a pH-stat apparatus, effects of dissolved carbonate on As(V) uptake were almost negligible at equilibrium, but titrant (0.1 M HCl) consumption was greater in the air-equilibrated systems (P(CO2) = 10(-3.5) atm) than in the CO2-free argon system at pH 4-7.75. The EXAFS analyses indicated that As(V) tetrahedral molecules were coordinated on iron octahedral via bidentate mononuclear ( 2.8 A) and bidentate binuclear (approximately equal to 3.3 A) bonding at pH 4.5-8 and loading levels of 0.46-3.10 microM m(-2). Using the results of the pseudo-equilibrium adsorption data and the XAS analyses, the pH-dependent As(V) adsorption under the P(CO2) = 10(-3.5) atm and the CO2-free argon system was modeled using surface complexation modeling, and the results are consistent with the formation of nonprotonated bidentate surface species at the hematite surfaces. The results also suggest that the acid titrant consumption was strongly affected by changes to electrical double-layer potentials caused by the adsorption of carbonate in the air-equilibrated system. Overall results suggest that the effects of dissolved carbonate on As(V) adsorption were influenced by the reaction conditions [e.g., available surface sites, initial As(V) concentrations, and reaction times]. Quantifying the effects of adsorbed carbonate may be important in predicting As(V) transport processes in groundwater, where iron oxide-coated aquifer materials are exposed to seasonally fluctuating partial pressures of CO2(g).  相似文献   

15.
Removal and recovery of high levels of arsenic (As) in copper smelting wastewater present a great environmental challenge. A novel approach was investigated for the first time using TiO(2) for As adsorptive removal from wastewater and subsequent spent adsorbent regeneration and As recovery using NaOH. EXAFS results demonstrate that As(III), as the only As species present in the raw water, does not form an aqueous complex with other metal ions. An average of 3890 ± 142 mg/L As(III) at pH 1.4 in the wastewater was reduced to 59 ± 79 μg/L in the effluent with final pH at 7 in the 21 successive treatment cycles using regenerated TiO(2). Coexisting heavy metals including Cd, Cu, and Pb with concentrations at 369 mg/L, 24 mg/L, and 5 mg/L, respectively, were reduced to less than 0.02 mg/L. As(III) adsorption followed pseudosecond-order rate kinetics, and the adsorption behavior was described with the charge distribution multisite surface complexation model. Approximately 60% As(III) in the waste solution after the TiO(2) regeneration process was recovered by thermo vaporization and subsequent precipitation of sodium arsenite, as suggested by the EDX and XPS analysis. This "zero" sludge process sheds new light on successful As remediation technology for acidic metallurgical industry wastewater.  相似文献   

16.
Ketza River mine tailings deposited underwater and those exposed near the tailings impoundment contain approximately 4 wt % As. Column-leaching tests indicated the potential for high As releases from the tailings. The tailings are composed dominantly of iron oxyhydroxides, quartz, calcite, dolomite, muscovite, ferric arsenates, and calcium-iron arsenates. Arsenopyrite and pyrite are trace constituents. Chemical compositions of iron oxyhydroxide and arsenate minerals are highly variable. The XANES spectra indicate that arsenic occurs as As(V) in tailings, but air-drying prior to analysis may have oxidized lower-valent As. The EXAFS spectra indicate As-Fe distances of 3.35-3.36 A for the exposed tailings and 3.33-3.35 A for the saturated tailings with coordination numbers of 0.96-1.11 and 0.46-0.64, respectively. The As-Ca interatomic distances ranging from 4.15 to 4.18 A and the coordination numbers of 4.12-4.58 confirm the presence of calcium-iron arsenates in the tailings. These results suggest that ferric arsenates and inner-sphere corner sharing or bidentate-binuclear attachment of arsenate tetrahedra onto iron hydroxide octahedra are the dominant form of As in the tailings. EXAFS spectra indicate that the exposed tailings are richer in arsenate minerals whereas the saturated tailings are dominated by the iron oxyhydroxides, which could help explain the greater release of As from the exposed tailings during leaching tests. It is postulated that the dissolution of ferric arsenates during flow-through experiments caused the high As releases from both types of tailings. Arsenic tied to iron oxyhydroxides as adsorbed species are considered stable; however, iron oxyhydroxides having low Fe/As molar ratios may not be as stable. Continued As releases from the tailings are likely due to dissolution of both ferric and calcium-iron arsenates and desorption of As from high-As bearing iron oxyhydroxides during aging.  相似文献   

17.
Thermal immobilization of copper contaminants in soil analogue minerals, quartz and kaolin, at low temperatures such as 300 degrees C is studied to corroborate its technical feasibility as a method for soil remediation. We use a synchrotron-based, X-ray absorption spectroscopy (XAS) technique to study the speciation of and the local structure around copper in the soil analogues that are thermally treated at 300-900 degrees C for 1 h. The toxicity characteristic leaching procedure (TCLP) method is employed to investigate the leaching behavior of copper compounds. CuO, being predominately transformed from Cu(OH)2 with a lesser amount from Cu(NO3)2 by 1-h heat application at 300-900 degrees C, is identified by the spectroscopy of X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) as the key species that is leaching-resistant due to its low solubility and its chemisorption onto the soil analogue minerals. Fourier transform of EXAFS spectrum of the Cu-doped kaolin heated at 900 degrees C for 1 h indicates that the intensity of Cu-Cu peaks (2.50 and 5.48 A, both without phase shift correction) is either relatively smaller or disappearing as compared with that of kaolin samples heated at 300 and 500 degrees C. The EXAFS analysis suggests that the Cu solid phase in the 900 degrees C kaolin sample is different from the lower temperature samples, the 900 degrees C SiO2 sample, and the Cu standards. The leaching studies also support the formation of a less soluble phase in the 900 degrees C kaolin sample. An increase of heating temperature, in the range of 105-900 degrees C, reduces the Cu leaching percentage; this reduction trend is more marked for Cu-doped kaolin than for Cu-doped SiO2.  相似文献   

18.
Size-reduced samples of southern yellow pine dimensional lumber, each treated with one of five different waterborne chemical preservatives, were leached using 18-h batch leaching tests. The wood preservatives included chromated copper arsenate (CCA), alkaline copper quaternary, copper boron azole, copper citrate, and copper dimethyldithiocarbamate. An unpreserved wood sample was tested as well. The batch leaching tests followed methodology prescribed in the U.S. Environmental Protection Agency toxicity characteristic leaching procedure (TCLP). The wood samples were first size-reduced and then leached using four different leaching solutions (synthetic landfill leachate, synthetic rainwater, deionized water, and synthetic seawater). CCA-treated wood leached greater concentrations of arsenic and copper relative to chromium, with copper leaching more with the TCLP and synthetic seawater. Copper leached at greater concentrations from the arsenic-free preservatives relative to CCA. Arsenic leached from CCA-treated wood at concentrations above the U.S. federal toxicity characteristic limit (5 mg/L). All of the arsenic-free alternatives displayed a greater degree of aquatic toxicity compared to CCA. Invertebrate and algal assays were more sensitive than Microtox. Examination of the relative leaching of the preservative compounds indicated that the arsenic-free preservatives were advantageous over CCA with respect to waste disposal and soil contamination issues but potentially posed a greater risk to aquatic ecosystems.  相似文献   

19.
The mechanisms whereby As(III) and As(V) in aqueous solution (pH 5.5-6.5) interact with the surfaces of goethite, lepidocrocite, mackinawite, and pyrite have been investigated using As K-edge EXAFS and XANES spectroscopy. Arsenic species retain original oxidation states and occupy similar environments on the oxyhydroxide substrates, with first-shell coordination to four oxygens at 1.78 A for As(III) and 1.69 A for As(V). In agreement with other workers, we find that inner sphere complexes form, apparently involving bidentate (bridging) arsenate or arsenite. Interaction of As(III) and As(V) with the sulfide surfaces shows primary coordination to four oxygens (As-O: 1.69-1.76 A) with further sulfur (approximately 3.1 A) and iron (3.4-3.5 A) shells suggesting outer sphere complexation. Arsenic species were also coprecipitated with mackinawite (pH 4.0), and these samples were further studied following oxidation. At high As(III) or As(V) concentrations, arsenate or arsenite species form, probably as sorption complexes, along with poorly crystalline arsenic sulfide (the only product at low As(V) concentrations). All oxidized samples show primary coordination to four oxygens at 1.7 A, indicating As(V); these arsenates may show both outer sphere complexation with residual mackinawite and inner sphere complexation with new oxyhydroxides. These experiments help to clarify our understanding of As mobility in near-surface environments.  相似文献   

20.
The objective of this research was to determine if Fe(II)-bearing iron oxides generate ferric hydroxides at sufficient rates for removing low levels of arsenic in packed-bed reactors, while at the same time avoiding excessive oxide production that contributes to bed clogging in oxygenated waters. Column experiments were performed to determine the effectiveness of three media for arsenic removal over a range in empty bed contact times, influent arsenic concentrations, dissolved oxygen (DO) levels, and solution pH values. Corrosion rates of the media as a function of the water composition were determined using batch and electrochemical methods. Rates of arsenic removal were first order in the As(V) concentration and were greater for media with higher corrosion rates. As(V) removal increased with increasing DO levels primarily due to faster oxidation of the Fe2+ released by media corrosion. To obtain measurable amounts of arsenic removal in 15 mM NaCl electrolyte solutions containing 50 microg/L As(V), the rate of Fe2+ released by the media needed to be at least 15 times greater than the As(V) feed rate into the column. In waters containing 30 mg/L of silica and 50 microg/L of As(V), measurable amounts of arsenic removal were obtained only for Fe2+ release rates that were at least 200 times greater than the As(V) feed rate. Although all columns showed losses in hydraulic conductivity overthe course of 90 days of operation, the conductivity values remained high, and the losses could be reversed by backwashing the media. The reaction products produced by the media in domestic tap water had average As-to-Fe ratios that were approximately 25% higher than those for a commercially available adsorbent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号