首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
 Microstructure, tensile and impact toughness properties and fracture location of friction stir welded AISI 1018 mild steel are revealed in this paper. The 5 mm thick AISI 1018 mild steel plates were friction stir welded with tool rotational speed of 1000 rpm and welding speed of 50 mm/min with tungsten base alloy tool. Tensile strength of stir zone is higher (8%) when compared to the base metal. This may be due to the formation of finer grains in the weld nugget region under the stirring action of the rotating tool. The ductility and impact toughness of the joints are decreased compared to the base metal and this is due to the inclusion of tungsten particles in the weld region.  相似文献   

2.
Ultra‐fine grained ferrite steels have higher strength and better toughness than the normal ferrite steels because of their micrometer or sub‐micrometer sized grains. In this paper the ultra‐fine grained steel SS400 is welded by CO2 laser. The shape of weld, cooling rate of HAZ, width of HAZ, microstructures and mechanical properties of the joint are discussed. Experimental results indicate that laser beam welding can produce weld with a large ratio of depth to width. The cooling rate of HAZ of laser beam welding is fast, the growth of prior austenite grains of HAZ is limited, and the width of weld and HAZ is narrow. The microstructures of weld metal and coarse‐grained HAZ of laser beam welding mainly consist of BL + M (small amount). With proper laser power and welding speed, good comprehensive mechanical properties can be acquired. The toughness of weld metal and coarse‐grained HAZ are higher than that of base metal. There is no softened zone after laser beam welding. The tensile strength of a welded joint is higher than that of base metal. The welded joint has good bending ductility.  相似文献   

3.
Steeliswidelyusedbecauseofitsgoodcompre hensive properties ,plentyofresourceandlowerprice .Thestrengthandtoughnessaretwoimpor tantpropertiesofsteels ,andpeoplemakeeffortstoincreasetheirvalues .Addingalloyingelementandcontrollingmicrostructurearetwobasicwaystoac complishtheaim .Therefinedmicrostructureob tainedbyprocessingtechniqueenablesthestrengthandtoughnessofsteeltobeincreasedwithoutaddingalloyingelementandtheratioofperformance costtobeincreased .Theultra finegrainedsteelshavefer ritegrains…  相似文献   

4.
The effect of welding processes such as shielded metal arc welding, gas metal arc welding and gas tungsten arc welding on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade is studied. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. Tensile and impact properties, microhardness, microstructure and fracture surface morphology of the welded joints have been evaluated and the results are compared. From this investigatio.n, it is found that gas tungsten arc welded joints of ferritic stainless steel have superior tensile and impact properties compared with shielded metal are and gas metal arc welded joints and this is mainly due to the presence of finer grains in fusion zone and heat affected zone.  相似文献   

5.
Dissimilar metal welds between ferritic low‐alloy and austenitic stainless steels commonly occur in power plant application. In order to overcome some of the problems encountered here, a trimetallic configuration using an intermediate piece (such as Alloy 800) between the austenitic and ferritic steels has been suggested. This paper describes some features of the joints between modified 9Cr‐1Mo steel and Alloy 800, produced with Inconel 82/182 filler material. The joints require heat‐treatment after welding and the results have shown that a treatment at 760 °C for 2 h would be optimal. Although most tensile failures occurred in the weld metal the welds were found to exhibit strength properties that are at least equal to those of Alloy 800, with a tensile elongation lying between those of the two base materials. Similarly, while the weld metals are slightly less tough than the two base materials, the weld metal toughness at 120 J is still quite adequate for the intended application.  相似文献   

6.
《钢铁冶炼》2013,40(1):50-62
Abstract

Austenitic stainless steel (ASS) welding consumables are being used for welding armour grade Q&T steels, as they have higher solubility for hydrogen in the austenitic phase, to avoid hydrogen induced cracking (HIC). Even with austenitic stainless steel consumables under high dilution, the risk of HIC prevailed. In recent years, the developments of low hydrogen ferritic steel (LHF) consumables that contain no hygroscopic compounds are utilised for welding Q&T steels. The use of ASS fillers for welding armour grade Q&T steels creates a duplex microstructure (austenite and δ ferrite) in the welds, which drastically reduces the joint efficiency (ratio of ultimate tensile strength of the joint and the base metal). On the other hand, the weld made using LHF fillers exhibited superior joint efficiency due to the preferential ferrite microstructure in the welds. The use of ASS and LHF consumables for armour grade Q&T steels will lead to formation of distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence on the dynamic fracture toughness of the armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence on the welding consumables and processes on the dynamic fracture toughness properties of armour grade Q&T steel joints. Shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes were used for fabrication of the joints using ASS and LHF welding consumables. The joints fabricated by SMAW process using ASS consumables exhibited superior dynamic fracture toughness values compared to all other joints.  相似文献   

7.
摘要:将质量分数为0.002%的微合金元素B加入至Fe-28Mn-9Al轻质TWIP钢中,以期改善其强塑积及室温冲击性能。利用X射线衍射、扫描电镜、电子万能拉伸试验机和金属摆锤冲击试验机对热轧TWIP钢的物相组成、微观组织、力学拉伸性能及室温冲击韧性进行了研究与分析。结果表明,微合金元素B的添加具有延缓奥氏体向铁素体转变的作用,细化了奥氏体晶粒,提升了钢的力学性能,TWIP钢的塑性、强塑积和冲击韧性均有明显的提高。  相似文献   

8.
目前国产LNG用镍基低温焊条存在的主要问题是无法同时满足强韧性要求。采用金相显微镜和扫描电镜对自主生产的3种ENiCrMo-6焊条熔敷金属的显微组织进行观察,应用硬度、冲击和拉伸试验对接头力学性能进行测试分析。结果表明:焊缝金属主要由奥氏体以及析出物构成,晶界间存在的低熔点共晶物,易形成沿晶裂纹,降低熔敷金属的拉伸、冲击和弯曲性能。随着合金含量的升高,强度和硬度总体呈上升趋势,对塑性和韧性有所损害,Nb的碳化物析出对裂纹扩展具有阻碍作用,有利于提高韧性。新研制的镍基焊条满足LNG设备对焊缝金属的性能要求。  相似文献   

9.
In the previous study, different crack propagation behaviours (ductile fracture and brittle cleavage fracture) were observed in two ×70 pipeline steel weldments (13.4 and 17.8-mm-thick) during single-edge notched bend testing. To further understand these two fracture behaviours, detailed microstructures of the base metal (BM), fine-grained heat-affected zone (FGHAZ), and coarse-grained heat-affected zone (CGHAZ) of these two ×70 pipeline steel weldments have been analysed. The results show that the initial structure of the two pipe BMs and different welding cooling rates owing to different thicknesses contributed to structural variations of the correlated sub-regions of the HAZ. For both weldments, the FGHAZ close to the BM has the highest fraction of the high-angle grain boundaries, the finest grain size, the lowest local strain levels, and the highest fraction of recrystallised ferrite grains. The CGHAZ of the 17.8-mm-thick pipe welds exhibits the lowest toughness with the highest hardness, a high frequency of deformed grains, the highest local strain level, and the highest density of preferred {100} cleavage planes than the other sub-regions in the HAZ. The high density of the {100}<011> texture components in the HAZ may cause the cleavage micro-cracks to propagate toward the BM at an approximate 45° angle to the original crack plane during bending tests.  相似文献   

10.
 The present investigation is aimed at to study the effect of welding processes such as shielded metal arc welding, gas metal arc welding and gas tungsten arc welding on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. Tensile and impact properties, micro hardness, microstructure and fracture surface morphology of the welded joints have been evaluated and the results are compared. From this investigation, it is found that gas tungsten arc welded joints of ferritic stainless steel showed superior tensile and impact properties compared with shielded metal arc and gas metal arc welded joints and this is mainly due to the presence of finer grains in fusion zone and heat affected zone.  相似文献   

11.
The effect of Nd:YAG laser welding aluminum alloys 6061, 5456, and 5086 was studied from a perspective of alloying element vaporization, hot cracking susceptibility, and resultant mechanical properties. Both continuous wave and pulsed Nd.YAG laser welds were investigated. It was found that Mg was vaporized during welding, the extent of which was a function of the weld travel speed. Calculations based upon evaporation theory, and assuming a regular solution model, resulted in an estimation of weld pool surface temperatures from 1080 to 1970 K for the continuous wave welds. Pulsed Nd:YAG laser welds were observed to be extremely susceptible to weld metal hot cracking whereas continuous wave Nd:YAG laser welds were crack-free. The hardness of 6061 welds was affected by the Mg vaporization such that base metal strengths could not be achieved by subsequent re-heat treatment to the T6 condition. This loss in hardness was attributed to a reduced ability of the alloy to precipitation harden due to a lower Mg concentration. In the cases of 5456 and 5086, when samples containing welds were processed to the O condition, the weld metal had reduced hardness relative to the base metal. This loss of hardness was also attributed to the loss of Mg in these welds, resulting in reduced solid solution strengthening.  相似文献   

12.
The effect of Nd:YAG laser welding aluminum alloys 6061, 5456, and 5086 was studied from a perspective of alloying element vaporization, hot cracking susceptibility, and resultant mechanical properties. Both continuous wave and pulsed Nd.YAG laser welds were investigated. It was found that Mg was vaporized during welding, the extent of which was a function of the weld travel speed. Calculations based upon evaporation theory, and assuming a regular solution model, resulted in an estimation of weld pool surface temperatures from 1080 to 1970 K for the continuous wave welds. Pulsed Nd:YAG laser welds were observed to be extremely susceptible to weld metal hot cracking whereas continuous wave Nd:YAG laser welds were crack-free. The hardness of 6061 welds was affected by the Mg vaporization such that base metal strengths could not be achieved by subsequent re-heat treatment to the T6 condition. This loss in hardness was attributed to a reduced ability of the alloy to precipitation harden due to a lower Mg concentration. In the cases of 5456 and 5086, when samples containing welds were processed to the O condition, the weld metal had reduced hardness relative to the base metal. This loss of hardness was also attributed to the loss of Mg in these welds, resulting in reduced solid solution strengthening.  相似文献   

13.
Fatigue crack growth tests of Ti-4.5Al-3V-2Fe-2Mo (SP-700) laser welds after various postweld heat treatments (PWHTs) were investigated. The welds and the mill-annealed base metal had similar fatigue crack growth rates (FCGRs) at a stress ratio (R) of 0.1. After increasing the stress ratio to 0.5, the peak-aged (482 °C) weld exhibited higher FCGRs due to increased notch brittleness of the material. The tough microstructure as well as tortuous crack path of the overaged (704 °C) weld could account for the reduced FCGRs, particularly at a higher R. The fatigue fracture appearance of the welds varied from transgranular to intergranular failures, depending on the stress intensity factor ranges and PWHTs. Experimental results also demonstrated that the 704 °C-aged weld with coarsened α + β structures had better impact toughness than the base metal with banded structures.  相似文献   

14.
The structure, the mechanical properties, the impact toughness, and the fracture mechanisms of the welded joints made of steel 09G2S plates by direct current welding and pulsed arc welding with a modulated arc current in the frequency range 0.25–5.0 Hz are studied. The application of low-frequency pulsed arc welding allowed us to form welded joints with a fine-grained structure in the weld metal and the heat-affected zone and to achieve a higher impact toughness and a longer cyclic fatigue life as compared to the welded joints fabricated by direct current welding. The achieved effect manifests itself over the entire testing range from 20 to–60°C.  相似文献   

15.
Weld metal grain structure and mechanical properties of the Ir-0.3 pct W alloy (DOP-26) doped with 60 ppm Th and 50 ppm Al have been investigated by use of a gas tungsten arc (GTA) welding process. The fusion zone grain structure is strongly influenced by heat input and puddle shape and therefore by the bead width. With increasing bead width from 2.5 to 3.7 mm, the grains in the fusion zone show a sharp change in growth direction near the centerline region and develop a fine columnar structure with grains growing parallel to the welding direction. Mechanical properties of the welds and base metal were characterized by tensile and impact tests from 650 to 1150 °C. The ductility and fracture behavior of DOP-26 welds are sensitive to weld bead width, postweld heat treatment, and weld-test orientation. The ductility of the welded specimens increases with increasing test temperature and decreasing weld bead width. The transverse weld specimen with a wide-bead width (3.7 mm) has the lowest impact ductility, and the longitudinal weld with a narrow-bead width (2.5 mm) has the highest elongation at all the test temperatures. The impact ductility of the transverse weld specimen with the narrow-bead width falls between the limits. All the results are discussed in terms of the fusion zone grain structure and fracture path of the welds.  相似文献   

16.
In the research work, an attempt is made to join nickel-based alloy 825 by employing CO2 laser beam welding. Successful full penetration weld joint of a 5?mm thick plate is achieved with a very low heat input of 120?J-mm?1. Narrow weld bead width of 0.6?mm at the root and 1.6?mm at the cap is observed fusion zone; the interface and base metal microstructures have been examined using both optical and scanning electron microscopic techniques to understand the microstructural changes which have occurred due to laser welding. A range of tests of Vickers micro hardness, tensile and impact tests had been performed on the weldment to ascertain the mechanical properties of the joint. Tensile failure at the base metal and a 180° root bend test conducted on the weldment ascertain the soundness of the weld joint produced. An attempt is made to correlate the microstructure and mechanical properties of the weldment. Intermetallics TiN and Al4C3 observed in the SEM\EDS analysis at the fusion zone are found to have improved the weld metal strength and hardness.  相似文献   

17.
利用金相(OM)、扫描电子显微镜(SEM)、电子背散射衍射(EBSD)以及能谱(EDS)等手段研究了FH40低温钢焊接接头显微组织演变及其对低温冲击韧性的影响。结果表明,FH40低温钢母材具有优异的综合力学性能,其屈服强度为420 MPa,抗拉强度为518 MPa,?60 ℃夏比冲击功为162 J,而焊接接头熔合线位置及热影响区的低温韧性急剧降低至16 J。显微组织分析表明,低温钢母材为细小的多边形铁素体+珠光体组织,在心部位置珠光体组织呈带状分布。焊接热影响区的显微组织主要为针状铁素体,但是心部存在明显的马氏体带。针状铁素体硬度为229.7 HV0.05,比原来的多边形铁素体高约40 HV0.05,而马氏体的硬度为313.7 HV0.05,较原来的多边形铁素体高约140 HV0.05。EBSD结果显示在马氏体带存在较高的内应力,这是造成焊接接头低温韧性急剧下降的主要原因。EDS表明,中心偏析导致热轧低温钢母材形成C、Mn富集的珠光体带,这些C、Mn富集的珠光体带在焊接热影响作用下重新奥氏体化,并在冷却过程中转变成硬质相马氏体组织。   相似文献   

18.
Friction stir welding of magnesium alloy ZM21   总被引:1,自引:0,他引:1  
Friction stir butt welding of Mg-Zn-Mn alloy ZM21 hot rolled plates (in three thicknesses — 5 mm, 10 mm and 25 mm) was investigated. Defect-free, full-penetration welds were produced after careful process parameter optimization. Microstructural studies, hardness tests, tensile tests, and bend tests were carried out. Welds produced in 5 mm thick (5-mm-welds) and 10 mm thick plates (10-mm-welds) showed relatively finer grains in the weld nugget and in the heat-affected zone compared to the welds produced in 25 mm thick plates (25-mm-welds). When compared to the base material, 25-mm-welds showed coarser grains both in the weld nugget and in the heat-affected zone. No significant hardness differences were observed between the welds and the base material. Tensile tests on 5-mm and 10-mm-welds yielded a joint efficiency of more than 75%. Bend performance of the welds was found to be satisfactory, falling only slightly behind the base material. Overall, the results show that friction stir welding can be successfully utilized for joining magnesium alloy ZM21 in various thicknesses.  相似文献   

19.
20.
 对铝含量为2%、4%(质量分数,下同)的310S耐热钢板材采用手工氩弧焊(TIG)的焊接方法进行焊接,利用光学显微镜对焊缝的显微组织进行分析,利用电子探针(EMPA)分析焊接母材的元素分布,并对焊接接头进行室温和高温(800℃)力学性能测试。结果表明:不同铝含量的310S耐热钢板材焊接后的组织均良好,都没有宏观裂纹及夹杂等缺陷;铝元素的加入,抑制了焊接热影响区晶粒的异常长大,细化了晶粒;高铝310S的焊接板材与母材一样具有优良的室温力学性能和高温力学性能,加铝310S耐热钢具有良好的焊接性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号