首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A visualization experiment is conducted to investigate the condensation of steam in a series of triangular silicon microchannels. The results indicate that droplet, annular, injection and slug-bubbly flow are the dominant flow patterns in these triangular silicon microchannels. With increased mass flow rate, or an increase in the hydraulic diameter under the same Reynolds number, the location at which the injection occurred is observed to move towards the channel outlet. The frequency of the injection increases, i.e. the flow of condensation instability is higher with increased inlet vapor Reynolds number, condensate Weber number and the prolongation of the injection location, or with a decrease in the hydraulic diameter of the channel. In addition, the wall temperature of the channel decreases along the condensation stream. The total pressure drop, the average condensation heat transfer coefficient and the average Nusselt number are observed to be larger with increased inlet vapor Reynolds number. Moreover, it is found that the condensation heat transfer is enhanced by a reduction in the channel scale.  相似文献   

2.
A visualization study is conducted to investigate condensation flow in wide rectangular silicon microchannels with the hydraulic diameter of 90.6 μm and width/depth ratio of 9.668. Droplet-annular compound flow, injection flow, and vapor slug-bubbly flow are observed along the channel, which differ from that in other cross-sectional shape microchannels. In the droplet-annular compound flow region, the vertical walls (short side) of the channel are completely covered by the condensate, while droplet condensation still exists on the horizontal wall (long side) of the channel. The location of the injection flow will be postponed with the increasing inlet vapor Reynolds number. The injection frequency will increase with the increasing inlet vapor Reynolds number and condensate Weber number. More specifically, the frequency in the wide rectangular microchannels is lower than that in triangular microchannels having the same hydraulic diameter. It is confirmed that the cross-sectional shape of the microchannel plays a significant role on the instability of condensation flow. In addition, the correlation of Nusselt number is also presented.  相似文献   

3.
A visualization study was performed on condensation of steam in microchannels etched in a 〈100〉 silicon wafer that was bonded by a thin Pyrex glass plate from the top. The microchannels had a trapezoidal cross section with a hydraulic diameter of 75 μm. Saturated steam flowed through these parallel microchannels, whose walls were cooled by natural convection of air at room temperature. The absolute pressure of saturated steam at the inlet ranged from 127.5 kPa to 225.5 kPa, and the outlet was at atmospheric pressure at approximately 101.3 kPa with the outlet temperature of the condensate ranging from 42.8 °C to 90 °C. Stable droplet condensation was observed near the inlet of the microchannel. When the condensation process progressed along the microchannels, droplets accumulated on the wall. As the vapor core entrained and pushed the droplets, it became an intermittent flow of vapor and condensate at downstream of the microchannels. The traditional annual flow, wavy flow and dispersed flow observed during condensation in macrochannels were not observed in the microchannels. Based on a modified classical droplet condensation theory, it is predicted that the droplet condensation heat flux increases as the diameter of the microchannel is decreased. It is also predicted that the droplet condensation heat flux of saturated steam at 225.5 kPa can reach as high as 1200 W/cm2 at ΔT=10 °C in a microchannel having a hydraulic diameter of 75 μm.  相似文献   

4.
A visualization study has been conducted to investigate the transition from annular flow to plug/slug flow in the condensation of steam in two different sets of parallel microchannels, having hydraulic diameters of 90 μm and 136 μm, respectively. The steam in the parallel microchannels was cooled on the bottom by forced convection of water and by natural convection of air from the top. It is found that the location, where the transition from annular flow to plug/slug flow takes place, depends on mass flux and cooling rate of steam. The effects of mass flux and cooling rate on the occurrence frequency of the injection flow in a single microchannel, having a hydraulic diameter of 120 μm and 128 μm, respectively, are investigated. It is found that two different shapes of injection flow occur in the smooth annular flow in microchannels: injection flow with unsteady vapor ligament occurring at low mass flux (or high cooling rate) and injection flow with steady vapor ligament occurring at high mass flux (or low cooling rate). It is also found that increase of steam mass flux, decrease of cooling rate, or decrease of the microchannel diameter tends to enhance instability of the condensate film on the wall, resulting in occurrence of the injection flow further toward the outlet with an increase in occurrence frequency.  相似文献   

5.
In this study, the experimental results of the condensing heat transfer coefficients of R600a, a hydrocarbon refrigerant, in a horizontal smooth copper tube with an inner diameter of 4 mm and outer diameter of 6 mm are presented at different vapor quality and different mass fluxes during condensation under annular flow conditions, by adjusting the desired vapor qualities at the test area. A specially-designed sight glass has been fitted to the inlet and outlet of the test tube to identify the flow type by naked eye after the inlet vapor quality of the refrigerant to be fed to the test area during the test is adjusted in the system. Thanks to a new method developed in the measuring system, the condensing heat transfer coefficients could be calculated by measuring the difference value (Ts − Tw) directly from the data collection unit. The experimental findings have shown that the condensing heat transfer coefficients drops down with reduction in vapor quality and the coefficient rises with the increase in the mass flux at constant vapor quality. A correlation has been developed from the data obtained. The condensing heat transfer coefficients obtained from the experimental study were seen to be consistent by ± 20% with the correlations developed by Shah, Travis and Cavallini–Zecchin.  相似文献   

6.
This study investigated the direct relationship between the measured condensation pressure drop and convective heat transfer coefficient of R134a flowing downward inside a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm during annular flow. R134a and water were used as working fluids on the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments were performed at mass fluxes of 260, 300, 340, 400, 456 and 515 kg m−2 s−1 in the high mass flux region of R134a. The condensing temperatures were around 40 and 50 °C; the heat fluxes were between 10.16 and 66.61 kW m−2. Paliwoda’s analysis, which focused mainly on the determination of the two-phase flow factor and two-phase length of evaporators and condensers, was adapted to the in-tube condensation phenomena in the test section to determine the condensation heat transfer coefficient, heat flux, two-phase length and pressure drop experimentally by means of a large number of data points obtained under various experimental conditions.  相似文献   

7.
This paper is the first of a two-part study concerning measurement and prediction of saturated flow boiling heat transfer in a water-cooled micro-channel heat sink. In this paper, new experimental results are discussed which provide new physical insight into the unique nature of flow boiling in narrow rectangular micro-channels. The micro-channel heat sink contained 21 parallel channels having a m cross-section. Tests were performed with deionized water over a mass velocity range of 135-402 kg/m2 s, inlet temperatures of 30 and 60 °C, and an outlet pressure of 1.17 bar. Results indicate an abrupt transition to annular flow near the point of zero thermodynamic equilibrium quality, and reveal the dominant heat transfer mechanism is forced convective boiling corresponding to annular flow. Contrary to macro-channel trends, the heat transfer coefficient is shown to decrease with increasing thermodynamic equilibrium quality. This unique trend is attributed to appreciable droplet entrainment at the onset of annular flow regime development, and the increase in mass flow rate of the annular film by droplet deposition downstream. Eleven previous empirical correlations are assessed and deemed unable to predict the correct trend of heat transfer coefficient with quality because of the unique nature of flow boiling in micro-channels, and the operating conditions of water-cooled micro-channel heat sinks falling outside the recommended application range for most correlations. Part II of this study will introduce a new annular flow model as an alternative approach to heat transfer coefficient prediction for micro-channels.  相似文献   

8.
In the present study, the void fraction and film thickness of pure R-134a flowing downwards in a vertical condenser tube are indirectly determined using relevant measured data together with an annular flow model and various void fraction models reported in the open literature. The vertical test section is a countercurrent flow double tube heat exchanger with refrigerant flowing down in the inner tube and cooling water flowing upward in the annulus. The inner tube is made from smooth copper tubing of 9.52 mm outer diameter with a length of 0.5 m. The experimental runs are carried out at average saturated condensing temperatures of 40 and 50 °C, and mass velocities are around 456 kg m− 2 s− 1, over the vapour quality range 0.82–0.93, while the heat fluxes are between 45.60 and 50.90 kW m− 2. Analysis based on simple void fraction models of the annular flow pattern are presented for forced convection condensation of pure R134a, taking into account the effect of the different saturation temperatures at high mass flux conditions. The comparisons of calculated film thickness show that the void fraction models of Spedding and Chen, and Chisholm and Armand are the most accurate ones with the experimental data due to their low deviation with Whalley's annular flow model over 35 void fraction models presented in this paper.  相似文献   

9.
A simultaneous visualization and measurement study has been carried out to investigate effects of inlet/outlet configurations on flow boiling instabilities in parallel microchannels, having a length of 30 mm and a hydraulic diameter of 186 μm. Three types of inlet/outlet configurations were investigated. Fluid flow entering to and exiting from the microchannels with the Type-A connection was restricted because the inlet and outlet conduits were perpendicular to the microchannels. The fluid flow had no restriction in entering to and existing from the microchannels with the Type-B connection. In the Type-C connection, fluid flow was restricted in entering each microchannel but was not restricted in exiting from the microchannels. It is found that amplitudes of temperature and pressure oscillations in the Type-B connection are much smaller than those in the Type-A connection under the same heat flux and mass flux conditions. On the other hand, nearly steady flow boiling exists in the parallel microchannels with the Type-C connection under the experimental conditions. Therefore, this configuration is recommended for high-heat-flux microchannel applications. As predicted, the stability threshold is determined by the minimum in the pressure-drop-versus-flow-rate curve. The pressure drop and heat transfer coefficient versus vapor quality for flow boiling in microchannels with the Type-C connection are presented. It is found that experimental data of pressure drop are higher and heat transfer coefficients are lower for boiling flow at high vapor quality in microchannels than those predicted from correlation equations for boiling flow in macrochannels, due to local dryout.  相似文献   

10.
A microchannel test section comprised of parallel square microchannels with a 25 × 25 μm and 50 × 50 μm cross section was manufactured. Boiling of perfluorinated dielectric fluid FC-72 and water in microchannels was studied. Troublesome occurrences associated with flow boiling in microchannels were reduced or eliminated with inlet/outlet restrictors, inlet/outlet manifolds and potential nucleation cavities incorporated in the array of microchannels. The gradual reduction of channel cross section in the manifolds ensured a uniform distribution of the working fluid among the microchannels. The flow restrictors provided a higher upstream pressure drop in comparison with the downstream pressure drop which favors vapor flow in the downstream direction and consequentially suppresses the vapor backflow present in flow boiling. The superheat of the microchannel wall necessary for the onset of boiling was decreased significantly with the incorporation of properly sized artificial cavities. Experimental results confirmed the benefits of the etched features, as there was (i) an even working fluid distribution (ii) without dominating backflows of vapor (iii) at a low temperature of the onset of boiling. Bubble growths as well as other events in the microchannels were visualized with a high-speed imaging system which captured images at over 87,000 frames per second. Results exhibit boiling hysteresis dependence of the working fluid and its mass flux through the microchannels. The temperature of the onset of boiling is highly dependent on the working fluid, microchannel size and its roughness.  相似文献   

11.
Experiments have been carried out to determine annular condensation heat transfer coefficient of steam in two silicon microchannels having trapezoidal cross sections with the same aspect ratio of 3.15 at 54 < G < 559 kg/m2 s under 3-side cooling conditions. A semi-analytical method, based on turbulent flow boundary layer theory of liquid film with correlations of pressure drop and void fraction valid for microchannels, is used to derive the annular local condensation heat transfer coefficients. The predicted values based on the semi-analytical model are found within ±20% of 423 data points. It is shown that the annular condensation heat transfer coefficient in a microchannel increases with mass flux and quality and decreases with the hydraulic diameter.  相似文献   

12.
This experimental study is performed to investigate condensation heat transfer coefficient of R-134a flow inside corrugated tube with different inclinations. Different inclinations of test condenser ranging from − 90° to + 90° and various flow mass velocities in the range of 87 to 253 [kg/m2s] are considered in this study. Data analysis showed that change in the tube inclination had a significant effect on condensation heat transfer behavior. At low mass velocities, and low vapor qualities, the highest condensation heat transfer coefficient was obtained for α = + 30° which was 1.41 times greater than the least one obtained for α = − 90°. The results also showed that at all mass velocities, the highest average heat transfer coefficients were achieved for α = + 30°. Based on the experimental results, a new empirical correlation is proposed to predict the condensation heat transfer coefficient of R134a flow in corrugated tubes with different inclinations.  相似文献   

13.
This paper predicts the condensation and evaporation pressure drops of R32, R125, R410A, R134a, R22, R502, R507a, R32/R134a (25/75 by wt%), R407C and R12 flowing inside various horizontal smooth and micro-fin tubes by means of the numerical techniques of artificial neural networks (ANNs) and non-linear least squares (NLS). In its analyses, this paper used experimental data from the National Institute of Standards and Technology (NIST) and Eckels and Pate, as presented in Choi et al.'s study provided by NIST. In their experimental setups, the horizontal test sections have 1.587, 3.78, 3.81 and 3.97 m long countercurrent flow double tube heat exchangers with refrigerant flowing in the inner smooth (8, 8.01 and 11.1 mm i.d.) and micro-fin (4.339, 5.45, 7.43 and 8.443 mm i.d.) copper tubes and cooling water flowing in the annulus. Their test runs cover a wide range saturation temperatures, vapor qualities and mass fluxes. The pressure drops are calculated with 1485 measured data points, together with analyses of artificial neural networks and non-linear least squares numerically. Inputs of the ANNs of the best correlation are the measured values of the test sections, such as mass flux, tube length, inlet and outlet vapor qualities, critical pressure, latent heat of condensation, mass fraction of liquid and vapor phases, dynamic viscosities of liquid and vapor phases, hydraulic diameter, two-phase density and the outputs of the ANNs, which comprise the experimental total pressure drops of the evaporation and condensation data from independent laboratories. The total pressure drops of in-tube condensation and in-tube evaporation tests are modeled using the artificial neural network (ANN) method of multi-layer perceptron (MLP) with 12-40-1 architecture. Its average error rate is 7.085%, which came from the cross validation tests of 1485 evaporation and condensation data points. Dependency of the output of the ANNs from 12 numbers of input values is also shown in detail, and new ANN based empirical pressure drop correlations are developed separately for the conditions of condensation and evaporation in smooth and micro-fin tubes as a result of the analyses. In addition, a single empirical correlation for the determination of both evaporation and condensation pressure drops in smooth and micro-fin tubes is proposed with an error rate of 14.556%.  相似文献   

14.
In this study, the best artificial intelligence method is investigated to estimate the measured convective heat transfer coefficient and pressure drop of R134a flowing downward inside a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm during annular flow numerically. R134a and water are used as working fluids in the tube side and annular side of a double tube heat exchanger, respectively. The ANN training sets have the experimental data of in-tube condensation tests including six different mass fluxes of R134a such as 260, 300, 340, 400, 456 and 515 kg m− 2 s− 1, two different saturation temperatures of R134a such as 40 and 50 °C and heat fluxes ranging from 10.16 to 66.61 kW m− 2. The quality of the refrigerant in the test section is calculated considering the temperature and pressure obtained from the experiment. The pressure drop across the test section is directly measured by a differential pressure transducer. Input of the ANNs are the measured values of test section such as mass flux, heat flux, the temperature difference between the tube wall and saturation temperature, average vapor quality, while the outputs of the ANNs are the experimental condensation heat transfer coefficient and measured pressure drop in the analysis. Condensation heat transfer characteristics of R134a are modeled to decide the best approach using several artificial neural network (ANN) methods such as multilayer perceptron (MLP), radial basis networks (RBFN), generalized regression neural network (GRNN) and adaptive neuro-fuzzy inference system (ANFIS). Elimination process of the ANN methods is performed by means of 183 data points, divided into two sets randomly, obtained in the experiments. Sets of test and training/validation include 33 and 120/30 data points respectively for the elimination process. Validation process, in terms of various experimental conditions, is done by means of 368 experimental data points having 68 data points for test set and 300 data points for training set. In training phase, 5-fold cross validation is used to determine the best value of ANNs control parameters. The ANNs performances were measured by means of relative error criteria with the usage of unknown test sets. The performance of the method of multi layer perceptron (MLP) with 5-13-1 architecture and radial basis function networks (RBFN) were found to be in good agreement, predicting the experimental condensation heat transfer coefficient and pressure drop with their deviations being within the range of ± 5% for all tested conditions. Dependency of outputs of the ANNs from input values is also investigated in the paper.  相似文献   

15.
The two-phase heat transfer coefficients of pure HFC-134a condensing inside a smooth tube-in-tube heat exchanger are experimentally investigated. The test section is a 0.5 m long double tube with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube is constructed from smooth copper tubing of 9.52 mm outer diameter and 8.1 mm inner diameter. The test runs are performed at average saturation condensing temperatures between 40–50 °C. The mass fluxes are between 260 and 515 kg m− 2s− 1 and the heat fluxes are between 11.3 and 55.3 kW m− 2. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The average heat transfer coefficient of the refrigerant is determined by applying an energy balance based on the energy transferred from the test section. The effects of heat flux, mass flux and condensation temperature on the heat transfer coefficients are also discussed. Eleven well-known correlations for annular flow are compared to each other using a large amount of data obtained from various experimental conditions. A new correlation for the condensation heat transfer coefficient is proposed for practical applications.  相似文献   

16.
Due to the solar radiation intensity variation over time, the outlet temperature or mass flow rate of heat transfer fluid (HTF) presents non-steady-state characteristics for solar collector. So, in the phase change thermal energy storage (PCTES) unit which is connected to solar collector, the phase change process occurs under the non-steady-state inlet boundary condition. In present paper, regarding the non-steady-state boundary, based on enthalpy method, a two dimensional physical and mathematical model for a shell-and-tube PCTES unit was established and the simulation code was self-developed. The effects of the non-steady-state inlet condition of HTF on the thermal performance of the PCTES unit were numerically analyzed. The results show that when the average HTF inlet temperature in an hour is fixed at a constant value, the melting time (time required for PCM completely melting) decreases with the increase of initial inlet temperature. When the initial inlet temperature increases from 30 °C to 90 °C, the melting time will decrease from 42.75 min to 20.58 min. However, the total TES capacity in an hour reduces from 338.9 kJ/kg to 211.5 kJ/kg. When the average inlet mass flow rate in an hour is fixed at a constant value, with the initial HTF inlet mass flow rate increasing, the melting time of PCM decreases. The initial inlet mass flow rate increasing from 2.0 × 10−4 kg/s to 8.0 × 10−4 kg/s will lead to the melting time decreasing from 37.42 min to 23.75 min and the TES capacity of PCM increasing from 265.8 kJ/kg to 273.8 kJ/kg. Under all the studied cases, the heat flux on the tube surface increases at first, until it reaches a maximum then it decreases over time. And the larger the initial inlet temperature or mass flow rate, the earlier the maximum value appearance and the larger the maximum value.  相似文献   

17.
In this study, the local characteristics of pressure drop and heat transfer were investigated experimentally for carbon dioxide condensation in a multi-port extruded aluminum test section, which had 10 circular channels each with 1.31 mm inner diameter. The CO2 was cooled with cooling water flow inside the copper blocks that were attached at both sides of the test section. The temperatures at the outer surface of the test section were measured with 24 K-type thermocouples embedded in the upper and lower surfaces along the length. Local heat fluxes were measured with 12 heat flux sensors to estimate the local enthalpies, temperatures and heat transfer coefficients. Bulk mean temperatures of CO2 at the inlet and outlet of the test section were measured with 2 K-type thermocouples. The measurements were performed for the pressure ranged from 6.48 to 7.3 MPa, inlet temperature of CO2 from 21.63 to 31.33℃, heat flux from 1.10 to 8.12 kW/m2, mass velocity from 123.2 to 315.2 kg/m2s, and vapor quality from 0 to 1. The results indicate that pressure drop is very small along the test section, heat transfer coefficient in the two-phase region is higher than that in the single-phase, and mass velocity has important effect on condensation heat transfer characteristics. In addition, experimental data were compared with previous correlations and large discrepancies were observed.  相似文献   

18.
A numerical research on flow regime transition in wavy microchannels was conducted. The model was based on the volume of fluid approach and user-defined routines including interfacial mass transfer and latent heat. The observed droplet flow, annular–wavy flow, injection flow, and slug–bubbly flow were qualitatively compared against experimental data and transition lines were established. The effects of inlet vapor velocity, wall heat flux, and microchannel geometry characteristics on the annular length, occurrence frequency of injection flow, initial slug volume, and bubble detachment frequency were investigated.  相似文献   

19.
In the present paper, critical heat flux (CHF) experiments of forced convection boiling were performed to investigate the CHF characteristics of a vertical annular channel with one heated rod and four spacer grids for new refrigerant R-134a. The experiments were conducted under outlet pressure of 11.6, 13, 16 and 20 bar, mass fluxes of 100–600 kg/m2 s, and inlet temperatures of 25–40 °C. The parametric trend of the CHF data was well consistent with previous understanding in water. The comparison between the present results with effect of the flow obstacle enhancing CHF and water data in similar geometry shows R-134a can be a modeling fluid for simulating water CHF in high pressure and high temperature condition even for annular geometry. The direct observation of flowing bubble behaviors contributes to enhancing our understanding on the effect of flow obstacles for flow boiling heat transfer.  相似文献   

20.
This paper reports the experimental investigation of a model for predicting flow pattern transitions and for the validation of void fraction models and correlations proposed in the authors' previous publications and for the identification of flow regimes in data corresponding to annular flow downward condensation of R134a in a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm. R134a and water are used as working fluids on the tube side and annular side, respectively, of a double tube heat exchanger. Condensation experiments are done at mass fluxes of 260 and 515 kg m− 2 s− 1 in the high mass flux region of R134a. The condensing temperatures are between 40 and 50 °C; heat fluxes are between 10.16 and 66.61 kW m− 2. A mathematical model proposed by Soliman based on the models of Kosky and Lockhart–Martinelli is used to determine the condensation film thickness of R134a. Comparative void fraction values are determined indirectly using the measured data under laminar and turbulent flow conditions together with various void fraction models and correlations reported in the literature. There is good agreement between the void fraction results obtained from the theoretical model and those obtained from the void fraction models of Soliman, Chisholm and Armand, Turner and Wallis, Smith, Spedding and Spence previously proposed in the authors' publications and tested against their experimental database. Various well-known flow regime correlations from the literature are investigated to identify the flow regime occurring in the test tube, the correlations of Taitel and Dukler, Dobson, Akbar et al., Breber et al., Cavallini et al., and Sardesai et al. can provide accurate estimates of the annular flow conditions in spite of their different working conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号