首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 794 毫秒
1.
功率超声对Pb-Sn合金凝固行为的影响   总被引:11,自引:0,他引:11  
冯伟骏  谭家隆  李喜孟  李光 《铸造》2004,53(5):376-378
研究了功率超声对铅锡合金凝固过程的影响,分析了其影响机制.结果表明,在功率超声作用下,声空化效应和声流效应使含铅5%的铅锡合金的凝固组织明显细化,并且经过功率600W的超声处理后,先析出相的析出温度升高3℃,凝固温度升高了5℃.随着超声功率的增加,合金组织的细化程度提高,但功率提高到一定程度时,细化作用减弱.  相似文献   

2.
李光  张阳  李喜孟  冯伟骏 《铸造技术》2006,27(4):374-377
研究了功率超声在铅锡合金凝固过程的作用,分析了超声功率、施振温度、熔体的冷却方式等参数的影响机制。结果表明,在功率超声作用下,声空化效应和声流效应使含铅5%的铅锡合金的凝固组织明显细化,随着超声功率的增加,合金组织的细化程度提高,但功率提高到一定程度时,细化作用减弱;施振温度、熔体的冷却方式等参数对超声在铅锡合金凝固过程的作用有较大的影响。  相似文献   

3.
功率超声对纯铝的细晶机制及作用区域研究   总被引:4,自引:1,他引:3  
采用恒定的超声功率、频率和施振深度,在不同温度区间对铝熔体施加超声振动,探讨功率超声对工业纯铝熔体形核、晶体成长的影响及其作用机制.结果表明,经超声处理的铸锭,凝固组织显著细化,晶粒尺寸为77~405μm,平均抗拉强度纵向提高22.3%,横向提高20.5%,平均屈服强度纵向提高18.4%,横向提高17.5%,平均伸长率纵向提高30.7%,横向降低18.4%.超声空化效应对产生大量晶核、形成等轴晶组织起决定性作用.声流效应能阻止晶体长大、促进晶粒均匀分布、细化组织,但对晶核生成影响较小.当增大施振温度区间时,空化效应得到了充分发挥,结合声流搅拌作用,凝固组织细化程度提高.根据铸锭凝固组织,研究了功率超声的作用区域,发现选择合理的施振温度有利于工业纯铝的超声铸造.  相似文献   

4.
采用超声波对低碳钢(含0.2%的C)和高碳钢(含1%的C)的凝固过程进行了处理,研究了超声波处理对碳钢凝固组织的影响.结果表明,超声波处理可以细化碳钢的凝固组织.低碳钢经超声波处理后等轴晶比例增加,二次枝晶间距减小;高碳钢经超声波处理后,组织中网状碳化物明显减小甚至消失.不论低碳钢还是高碳钢,其组织均随超声功率的增加而细化.超声波细化碳钢凝固组织的主要原因是其空化效应.  相似文献   

5.
李杰  陈伟庆  何北星  王晓峰  刘青 《铸造》2007,56(7):754-756
主要研究了超声处理对高碳钢凝固组织的作用,分析了不同处理方式对其凝固组织的影响。试验结果表明:高碳钢液凝固前进行超声处理,其凝固组织没有发生明显的变化;对加稀土铈的高碳钢液在凝固前进行超声处理,凝固组织细化明显;在钢液凝固过程中引入超声波,初生树枝晶被击碎形成均匀细小的等轴晶,高碳钢凝固组织显著细化。  相似文献   

6.
超声波熔体处理对高碳钢凝固组织和性能的影响   总被引:1,自引:0,他引:1  
李杰  陈伟庆 《铸造》2008,57(10)
研究了超声波熔体处理对加稀土的高碳钢凝固组织和力学性能的作用,分析了不同超声波功率对其凝固组织和力学性能的影响。结果表明:超声波处理可以明显细化加稀土的高碳钢的凝固组织;随着超声波功率的增加,组织细化程度提高,功率提高到一定程度,细化作用不再明显增强;超声处理对加稀土的高碳钢强度的影响不大,但是其断面收缩率提高了17.87%-35.64%、伸长率提高了66.54%-102.90%。  相似文献   

7.
功率超声对T10钢凝固特性的影响   总被引:7,自引:2,他引:7  
张勇  刘清梅  宋耀林  戚飞鹏  翟启杰 《铸造》2006,55(2):188-190
采用功率超声对T10钢的凝固过程进行处理,分析了功率超声对T10钢凝固组织和凝固冷却曲线的影响,并在此基础上探索了超声空化和声流效应对T10钢凝固过程的作用机理。结果表明,功率超声能够细化T10钢凝固组织、缩短凝固时间、降低凝固开始温度,超声波功率为700W时得到均匀细小的等轴晶。  相似文献   

8.
超声处理对7050铝合金凝固组织晶粒细化影响   总被引:1,自引:0,他引:1  
研究了功率超声对7050铝合金凝固组织晶粒细化规律。实验结果表明,功率超声施振对7050凝固组织有显著细化作用,并随施振功率的增大,晶粒细化效果增强。但超声施振功率增大到一定程度后,晶粒细化效果不再明显。在铝熔体凝固过程的不同温度区间施加超声振动,温度过高、过低都会减弱细化效果,超声最佳施振温度区间为760~660℃。施振功率为240W时平均晶粒尺寸可达67μm。对平均晶粒尺寸与超声功率分析表明:超声施振功率与细化晶粒尺寸近似满足负指数递减关系,这为超声细晶技术在工业应用方面提供了实验依据。  相似文献   

9.
对1.5kg的纯铝熔体进行了功率超声辅助凝固试验,研究了功率超声对不同纯度纯铝凝固组织的影响,并比较了机械搅拌与功率超声的细化效果。结果表明,功率超声可以有效细化99.7%工业纯铝以及99.992%高纯铝的凝固组织。功率超声与机械搅拌相比,所获得的凝固组织更均匀且不易产生铸造缺陷。本研究还基于结晶游离理论讨论了功率超声的细化机理。功率超声的空化作用促进了超声耦合头附近液面的异质形核,声流作用则促进了晶粒的游离和沉淀。此二者的综合效应是等轴晶区形成的主要原因。  相似文献   

10.
功率超声对纯铝凝固组织的影响   总被引:2,自引:1,他引:1  
对1.5 kg的纯铝熔体进行了功率超声辅助凝固试验,研究了功率超声对不同纯度纯铝凝固组织的影响,并比较了机械搅拌与功率超声的细化效果。结果表明,功率超声可以有效细化w(Al)=99.7%工业纯铝以及w(Al)=99.992%高纯铝的凝固组织。功率超声与机械搅拌相比,所获得的凝固组织更均匀且不易产生铸造缺陷。基于结晶游离理论讨论了功率超声的细化机制。功率超声的空化作用促进了超声耦合头附近液面的异质形核,声流作用则促进了晶粒的游离和沉淀。此二者的综合效应是等轴晶区形成的主要原因。  相似文献   

11.
研究了在凝固初期施加超声波对低碳钢含气程度的影响。结果表明,较低功率的超声波可以更加有效的脱除钢锭内气体;高过热度下的超声波处理有利于降低钢锭含气程度;为了降低钢锭含气程度,最有利的超声处理时间为15 s。并分析了产生上述结果的机理。  相似文献   

12.
对Mg-3Ca合金熔体进行超声处理来研究超声功率、施振时间和施振温度对合金除气及凝固组织的影响。结果表明,采用超声波处理技术,可以有效去除Mg-3Ca合金熔体中的气体,从而提高铸锭的致密度。超声除气效果与施振功率、处理时间及处理温度密切相关。当施振功率过小、处理时间过短或过长及处理温度过高或过低均不会有良好的除气效果。熔体处理温度为:700℃,超声功率为150W,处理时间为120s时除气效果最好,除气率可达53.8%。另外,超声波在去除熔体中气体的同时,也使得铸锭的凝固组织变得细小、均匀。粗大的树枝晶不利于气泡的上浮和熔体补缩;而均匀、细小的等轴晶则有利于这一点。  相似文献   

13.
功率超声具有独特的变质作用,是一种绿色无污染的环保型变质处理方法。研究了功率超声对巴氏合金凝固过程的影响。结果表明,在巴氏合金的凝固过程中导入功率超声,能够显著细化巴氏合金组织,但随超声功率增大,热效应变明显,合金凝固后的组织又变得粗大。根据该结果,分析了功率超声变质细化的机理。  相似文献   

14.
试验研究了双超声场中,施振温度和处理区域距离,对流经处理区的A356铝合金半固态浆料凝固组织的影响规律。结果表明,双超声场对凝固组织的细化、球化效果较好。浇注温度为630℃并施振所获得的金相组织晶粒最细小,球化最均匀。而随着施振温度升高,晶粒反而变得粗大。同时,由于超声波的衰减,当处理区域距离为5mm时,获得的组织最好。  相似文献   

15.
在激光熔化沉积316L不锈钢的过程中耦合不同功率的超声振动,研究了超声功率对晶粒形态尺寸、凝固组织形成机制以及晶粒生长特性的影响。研究表明,激光熔化沉积过程中316L不锈钢晶粒发生定向凝固外延生长,形成粗大的柱状晶。施加超声会将沿[100]方向外延生长的粗大原生柱状晶打碎,产生细化晶粒的效果;沿柱状晶外延生长方向传递的超声振动增大了晶粒内沿长轴方向的累积取向差,提高了平均位错密度。施加超声有助于加强熔池流体的对流,降低沿沉积方向的温度梯度,使得垂直生长的柱状晶更快转变为八字形柱状晶;同时提高合金凝固冷速,使得柱状晶宽度以及晶粒内部一次枝晶列间距减小,实现宏观晶粒尺寸与微观枝晶间距的细化。  相似文献   

16.
以超声波输出功率密度、处理时间、熔体施振温度和铸型预热温度为研究因素,对LC9合金熔体施加低功率超声振动进行了试验研究。结果表明,通过控制低功率超声熔体处理参数与凝固条件,可以制备出初生相为球状或细小颗粒状晶体的LC9合金;功率密度在0~5W/cm2范围内,随着功率密度的增大,初生晶粒逐渐细化,但功率密度大于5W/cm2后,初生晶粒大小不再发生明显变化;随着搅拌时间的增加或施振温度的提高,初生晶粒尺寸先减小后增大,其转折点分别为45s和660℃;在室温~450℃的范围内,随着铸型预热温度的增加,晶粒尺寸迅速增大,当预热温度高于300℃时,超声波所起的晶粒球化效果被削弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号