首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 585 毫秒
1.
Reaction kinetics in a coarse equimolar powder mixture were slow enough to allow for the different stages to be identified, notably in the lower and higher temperature ranges, respectively. In the former ( T ≤ 1600 K), Al2TiO5 nucleation was hindered by the strain energy contribution to the overall driving force. The setting up of metastable layer sequences Al2TiO5/TiO2/Al2O3 was found to occur generally during subsequent growth. The high Al mobility in the TiO2 provided a rapid aluminum transport from the metastable Al2O3/TiO2 interface to the TiO2/Al2TiO5 front. At temperatures above ∼1700 K the Al2O3/TiO2 interface was very rapidly sealed off by Al2TiO5 formation. Reactant transport across the Al2TiO5 was slow because of the low mobilities in the product phase. Therefore, much lower product growth velocities were observed at higher temperatures than at lower temperatures.  相似文献   

2.
Al2TiO5 formation in Al2O3/TiO2 multilayer composites obtained by slip casting has been studied in the temperature interval ranging from 1200° to 1450°C. It has been found that nucleation plays a fundamental role in Al2TiO5 formation. Furthermore, it has been observed that initial growth of Al2TiO5 is substantially enhanced when in contact with TiO2.  相似文献   

3.
Alumina–aluminum titanate–titania (Al2O3–Al2TiO5–TiO2) nanocomposites were synthesized using alkoxide precursor solutions. Thermal analysis provided information on phase evolution from the as-synthesized gel with an increase in temperature. Calcination at 700°C led to the formation of an Al2O3–TiO2 nanocomposite, while at a higher temperature (1300°C) an Al2O3–Al2TiO5–TiO2 nanocomposite was formed. The nanocomposites were uniaxially compacted and sintered in a pressureless environment in air to study the densification behavior, grain growth, and phase evolution. The effects of nanosize particles on the crystal structure and densification of the nanocomposite have been discussed. The sintered nanocomposite structures were also characterized for dielectric properties.  相似文献   

4.
Subsolidus phase equilibria in the system Fe2O3–Al2O3–TiO2 were investigated between 1000° and 1300°C. Quenched samples were examined using powder X-ray diffraction and electron probe microanalytical methods. The main features of the phase relations were: (a) the presence of an M3O5 solid solution series between end members Fe2TiO5 and Al2TiO5, (b) a miscibility gap along the Fe2O3–Al2O3 binary, (c) an α-M2O3( ss ) ternary solid-solution region based on mutual solubility between Fe2O3, Al2O3, and TiO2, and (d) an extensive three-phase region characterized by the assemblage M3O5+α-M2O3( ss ) + Cor( ss ). A comparison of results with previously established phase relations for the Fe2O3–Al2O3–TiO2 system shows considerable discrepancy.  相似文献   

5.
Porous Cr3C2 grains (∼300 to 500 μm) with ∼10 wt% of Cr2O3 were prepared by heating a mixture of MgCr2O4 grains and graphite powder at 1450° to 1650°C for 2 h in an Al2O3 crucible covered by an Al2O3 lid with a hole in the center. The porous Cr3C2 grains exhibited a three-dimensional network skeleton structure. The mean open pore diameter and the specific surface area of the porous grains formed at 1600°C for 2 h were ∼3.5 (μm and ∼6.7 m2/g, respectively. The present work investigated the morphology and the formation conditions of the porous Cr3C2 grains, and this paper will discuss the formation mechanism of those grains in terms of chemical thermodynamics.  相似文献   

6.
The ternary phase diagram of Al2O3-La2O3-TiO2 at 1400°C was determined with 12 compatibility triangles. Al2O3 stabilizes the A-site-deficient La2/3TiO3 perovskite structure. According to XRD and microstructural investigations, the solid solution extends along the La2/3TiO3-LaAlO3 tie line from at least 4 mol% LaAlO3 to pure LaAlO3. With increasing LaAlO3 content, the stabilized La2/3TiO3 structure changes from orthorombic via tetragonal to cubic.  相似文献   

7.
An unagglomerated, monosized Al2O3TiO2 composite powder was prepared by the stepwise hydrolysis of titanium alkoxide in an Al2O3 dispersion. Particle size was controlled by selecting the particle size of the starting Al2O3 powder; TiO2 content was determined by the amount of alkoxide hydrolyzed. A composite-powder compact containing 50 mol% TiO2, when fired at 1350°C for 30 min, showed nearly theoretical density with aluminum titanate phase formation.  相似文献   

8.
The sintering behavior of an Al2O3 compact containing uniformly dispersed Al2O3 platelets has been investigated. The results reveal a significant decrease in the sintering rate as well as the formation of voids and cracklike defects in the presence of nonsinterable platelets. The addition of a small amount (2 vol%) of tetragonal-ZrO2 particles enhances the sintering rate, increases end-point density (∼99.5% of theoretical density) and prevents formation of sintering defects.  相似文献   

9.
In the system Ta2O3-Al2O5 solid solutions of metastable δ-Ta2O5 (hexagonal) are formed up to 50 mol% Al2O3 from amorphous materials prepared by the simultaneous hydrolysis of tantalum and aluminum alkoxides. The values of the lattice parameters decrease linearly with increasing Al2O3, content. The to β-Ta2O5 (orthorhombic, low-temperature form) transformation occurs at ∼950°C. The solid solution containing 50 mol% Al2O3 transforms at 1040° to 1100°C to orthorhombic TaAlO4. Orthorhombic TaAlO4 contains octahedral TaO6 groups in the structure.  相似文献   

10.
SiO2-Al2O3 melts containing 42 and 60 wt% A12O3 were homogenized at 2090°C (∼10°) and crystallized by various heat treatment schedules in sealed molybdenum crucibles. Mullite containing ∼78 wt% A12O3 precipitated from the 60 wt% A12O3 melts at ∼1325°± 20°C, which is the boundary of a previously calculated liquid miscibility gap. When the homogenized melts were heat-treated within this gap, the A12O3 in the mullite decreased with a corresponding increase in the Al2O3 content of the glass. A similar decrease of Al2O3 in mullite was observed when crystallized melts were reheated at 1725°± 10°C; the lowest A12O3 content (∼73.5 wt%) was in melts that were reheated for 110 h. All melts indicated that the composition of the precipitating mullite was sensitive to the heat treatment of the melts.  相似文献   

11.
Simulataneous additions of SrO and Al2O3 to ZrO2 (12 mol% CeO2) lead to the in situ formation of strontium aluminate (SrO · 6Al2O3) platelets (∼0.5 μm in width and 5 to 10 μm in length) within the Ce-TZP matrix. These platelet-containing Ce-TZP ceramics have the strength (500 to 700 MPa) and hardness (13 to 14 GPa) of Ce-TZP/Al2O3 while maintaining the high toughness (14 to 15 MPa ± m1/2) of Ce-TZP. Optimum room-temperature properties are obtained at SrO/Al2O3 molar ratios between 0.025 and 0.1 for ZrO2 (12 mol% CeO2) with starting Al2O3 contents ranging between 15 and 60 vol%. The role of various toughening mechanisms is discussed for these composite ceramics.  相似文献   

12.
In the system TiO2—Al2O3, TiO2 (anatase, tetragonal) solid solutions crystallize at low temperatures (with up to ∼ 22 mol% Al2O3) from amorphous materials prepared by the simultaneous hydrolysis of titanium and aluminum alkoxides. The lattice parameter a is relatively constant regardless of composition, whereas parameter c decreases linearly with increasing Al2O3. At higher temperatures, anatase solid solutions transform into TiO2 (rutile) with the formation of α-Al2O3. Powder characterization is studied. Pure anatase crystallizes at 220° to 360°C, and the anatase-to-rutile phase transformation occurs at 770° to 850°C.  相似文献   

13.
MgAl2O4 (MA) spinel powder was synthesized by heating an equimolar composition of MgO and Al2O3 in LiCl, KCl, or NaCl. The synthesis temperature can be decreased from >1300°C (required by the conventional solid–solid reaction process) to ∼1100°C in LiCl, or to ∼1150°C in KCl or NaCl. The molten salt synthesized MA powder was pseudomorphic and retained, to a large extent, the size and morphology of the original Al2O3 raw material, indicating that a "template formation mechanism" plays an important role in the synthesis process.  相似文献   

14.
NiAl2O4/SiO2 and Co2+-doped NiAl2O4/SiO2 nanocomposite materials of compositions 5% NiO – 6% Al2O3– 89% SiO2 and 0.2% CoO – 4.8% NiO – 6% Al2O3– 89% SiO2, respectively, were prepared by a sol–gel process. NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals were grown in a SiO2 amorphous matrix at around 1073 K by heating the dried gels from 333 to 1173 K at the rate of 1 K/min. The formations of NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals in SiO2 amorphous matrix were confirmed through X-ray powder diffraction, Fourier transform infrared spectroscopy, differential scanning calorimeter, transmission electron microscopy (TEM), and optical absorption spectroscopy techniques. The TEM images revealed the uniform distribution of NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals in the amorphous SiO2 matrix and the size was found to be ∼5–8 nm.  相似文献   

15.
The decomposition of Al2(1- x )Mg x Ti(1+ x )O5 ceramics in air has been studied between 900° and 1175°C for 0 lessthan equal to x lessthan equal to 0.6. The decomposition temperature versus composition x predicted using a thermodynamic model based on the regular solution approach is in satisfactory agreement with the experimental results. The decomposition kinetics has been studied at 1100°C for x = 0, 0.1, and 0.2 and follows a nucleation and growth mechanism. Random nucleation of the reaction products is hindered by the high elastic stresses that result from the molar volume change related to decomposition because of the small chemical driving force available. Decomposition occurs only at a limited number of sites, probably associated with the presence of impurities and/or glassy phase. The decomposition products grow as nodules formed by an Al2O3 (+ MgAl2O4 for x > 0) core and a TiO2 shell. The growth is parabolic for x = 0 and linear for x = 0.1 and 0.2. The rate-controlling step in the decomposition mechanism of pure Al2TiO5 ( x = 0) is the transport of Al3+ ions through the TiO2-rutile phase.  相似文献   

16.
Thermodynamic data on activities, activity coefficients, and free energies of mixing in SiO2-Al2O3 solutions were calculated from the phase diagram. Positive deviations from ideal mixing in the thermodynamic data suggest a tendency for liquid immiscibility in both SiO2- and Al2O3-rich compositions. The calculated data were used to estimate regions of liquid-liquid immiscibility. A calculated metastable liquid miscibility gap with a consolute temperature of ∼1540°C at a critical composition of ∼36 mol% Al2O3 was considered to be thermodynamically most probable; the gap extended from ∼11 to °49 mol% Al2O3 at 1100°C. SiO2-rich glass compositions showed evidence of glass-in-glass phase separation when examined by direct transmission electron microscopy.  相似文献   

17.
The kinetics of the growth of Al2O3 whiskers by the reaction of Al with a trace amount of H2O in an H2 atmosphere were studied. The activation energy in the region of constant growth rate was ∼77 kcal mol−1. This activation energy value, in the light of thermodynamic calculations and other theoretical considerations, suggests that the rate-determining step in the growth of these whiskers is the dissociation of H2O molecules on the surface of Al2O3.  相似文献   

18.
The fracture strengths of sintered Al2O3 containing 20 and 40 vol% ZrO2(12 mol% CeO2)—zirconia-toughened alumina (ZTA)—composites along with the fracture resistance can be increased (e.g., to ∼900 MPa and >12 Mpa·m1/2, respectively), by increasing the mean grain size of the t -ZrO2 (and the Al2O3) from ∼0.5 μm to ∼3 μm. At these lower t -ZrO2 contents, the fracture strength-fracture resistance curves show a continuous rise as opposed to the strength maxima observed in polycrystalline t -ZrO2(12 mol% CeO2), CeTZP, and ZrO2(12 mol% CeO2) ceramics containing ≤20 vol% Al2O3. The toughened composites also exhibit excellent damage resistance with fracture strengths of 500 MPa retained with surfaces containing ∼150- N Vickers indentations which produce cracks of ∼160-μm radius. Greater damage resistance correlates with an increase in the apparent R -curve response of these composites.  相似文献   

19.
Pressureless sintering of SiC-whisker-reinforced Al2O3 composites was investigated. In Part I of the study, the effect of the matrix (Al2O3) powder surface area on densification behavior and microstructure development is reported. Compacts prepared with higher surface area Al2O3 powder showed enhanced densification at lower whisker concentrations (5 and 15 vol%). Samples with 15 vol% whiskers could be pressureless sintered to ∼97% relative density with zero open porosity and ∼1.6-μm matrix average grain intercept size.  相似文献   

20.
The phase relationships in the CaHfTi2O7-Gd2Ti2O7 (zirconolite-pyrochlore) pseudobinary system were investigated, after heating at 1500°C, because of their importance in the design of pyrochlore-rich titanate ceramics for immobilization of impure surplus plutonium. Up to 15 mol% of MgTi2O5 and Al2TiO5 were added to CaHfTi2O7-Gd2Ti2O7 compositions to elucidate the effects of divalent and trivalent impurities on the phase stability within these systems. From X-ray diffractometry analysis, scanning electron microscopy, and energy dispersive X-ray spectrometry, phase formation and compositional stability limits were evaluated. The main phases observed in these systems were pyrochlore, perovskite, and polytypes of zirconolite. The formation of the 2 M -, 4 M -, and 3 O -zirconolite polytypes was dependent on the amount of aluminum or magnesium present. In the magnesium system, a large area of pyrochlore-only was observed, which indicated that divalent impurities of appropriate ionic size could be readily incorporated in the eightfold site of the pyrochlore. The locations of the tentative phase boundaries are discussed with respect to the chemical composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号