首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The factorization algorithm of Pollard generates a sequence in ? n by $$x_0 : = 2;x_{i + 1} : = x_i^2 - 1(\bmod n),i = 1,2,3,...$$ wheren denotes the integer to be factored. The algorithm finds an factorp ofn within \(0\left( {\sqrt p } \right)\) macrosteps (=multiplications/divisions in ? n ) on average. An empirical analysis of the Pollard algorithm using modified sequences $$x_{i + 1} = b \cdot x_i^\alpha + c(\bmod n),i = 1,2,...$$ withx 0,b,c,α∈? and α≥2 shows, that a factorp ofn under the assumption gcd (α,p-1)≠1 now is found within $$0\left( {\sqrt {\frac{p}{{ged(\alpha ,p - 1}}} } \right)$$ macrosteps on average.  相似文献   

2.
O. G. Mancino 《Calcolo》1970,7(3-4):275-287
LetX be a point of the realn-dimensional Euclidean space ? n ,G(X) a given vector withn real components defined in ? u ,U an unknown vector withs real components,K a known vector withs real components andA a given reals×n matrix of ranks. Assuming that, for every pair of pointsX 1 , X2of ? n ,G(X) satisfies the conditions $$(G(X_1 ) - G(X_2 ), X_1 - X_2 ) \geqslant o (X_1 - X_2 , X_1 - X_2 )$$ and $$\left\| {(G(X_1 ) - G(X_2 )\left\| { \leqslant M} \right\|X_1 - X_2 )} \right\|$$ wherec andM are positive constants, we prove that a unique solution of the system $$\left\{ \begin{gathered} G(X) + A ^T U = 0 \hfill \\ AX = K \hfill \\ \end{gathered} \right.$$ exists and we show a method for finding such a solution  相似文献   

3.
J. M. F. Chamayou 《Calcolo》1978,15(4):395-414
The function * $$f(t) = \frac{{e^{ - \alpha \gamma } }}{\pi }\int\limits_0^\infty {\cos t \xi e^{\alpha Ci(\xi )} \frac{{d\xi }}{{\xi ^\alpha }},t \in R,\alpha > 0} $$ [Ci(x)=cosine integral, γ=Euler's constant] is studied and numerically evaluated;f is a solution to the following mixed type differential-difference equation arising in applied probability: ** $$tf'(t) = (\alpha - 1)f(t) - \frac{\alpha }{2}[f(t - 1) + f(t + 1)]$$ satisfying the conditions: i) $$f(t) \geqslant 0,t \in R$$ , ii) $$f(t) = f( - t),t \in R$$ , iii) $$\int\limits_{ - \infty }^{ + \infty } {f(\xi )d\xi = 1} $$ . Besides the direct numerical evaluation of (*) and the derivation of the asymptotic behaviour off(t) fort→0 andt→∞, two different iterative procedures for the solution of (**) under the conditions (i) to (iii) are considered and their results are compared with the corresponding values in (*). Finally a Monte Carlo method to evaluatef(t) is considered.  相似文献   

4.
L. Rebolia 《Calcolo》1973,10(3-4):245-256
The coefficientsA hi and the nodesx mi for «closed” Gaussian-type quadrature formulae $$\int\limits_{ - 1}^1 {f(x)dx = \sum\limits_{h = 0}^{2_8 } {\sum\limits_{i = 0}^{m + 1} {A_{hi} f^{(h)} (x_{mi} ) + R\left[ {f(x)} \right]} } } $$ withx m0 =?1,x m, m+1 =1 andR[f(x)]=0 iff(x) is a polinomial of degree at most2m(s+1)+2(2s+1)?1, have been tabulated for the cases: $$\left\{ \begin{gathered} s = 1,2 \hfill \\ m = 2,3,4,5 \hfill \\ \end{gathered} \right.$$ .  相似文献   

5.
H. H. Gonska  J. Meier 《Calcolo》1984,21(4):317-335
In 1972 D. D. Stancu introduced a generalization \(L_{mp} ^{< \alpha \beta \gamma > }\) of the classical Bernstein operators given by the formula $$L_{mp}< \alpha \beta \gamma > (f,x) = \sum\limits_{k = 0}^{m + p} {\left( {\begin{array}{*{20}c} {m + p} \\ k \\ \end{array} } \right)} \frac{{x^{(k, - \alpha )} \cdot (1 - x)^{(m + p - k, - \alpha )} }}{{1^{(m + p, - \alpha )} }}f\left( {\frac{{k + \beta }}{{m + \gamma }}} \right)$$ . Special cases of these operators had been investigated before by quite a number of authors and have been under investigation since then. The aim of the present paper is to prove general results for all positiveL mp <αβγ> 's as far as direct theorems involving different kinds of moduli of continuity are concerned. When applied to special cases considered previously, all our corollaries of the general theorems will be as good as or yield improvements of the known results. All estimates involving the second order modulus of continuity are new.  相似文献   

6.
In this paper we construct an interpolatory quadrature formula of the type $$\mathop {\rlap{--} \smallint }\limits_{ - 1}^1 \frac{{f'(x)}}{{y - x}}dx \approx \sum\limits_{i = 1}^n {w_{ni} (y)f(x_{ni} )} ,$$ wheref(x)=(1?x)α(1+x)β f o(x), α, β>0, and {x ni} are then zeros of then-th degree Chebyshev polynomial of the first kind,T n (x). We also give a convergence result and examine the behavior of the quantity \( \sum\limits_{i = 1}^n {|w_{ni} (y)|} \) asn→∞.  相似文献   

7.
We study certain properties of Rényi entropy functionals $H_\alpha \left( \mathcal{P} \right)$ on the space of probability distributions over ?+. Primarily, continuity and convergence issues are addressed. Some properties are shown to be parallel to those known in the finite alphabet case, while others illustrate a quite different behavior of the Rényi entropy in the infinite case. In particular, it is shown that for any distribution $\mathcal{P}$ and any r ∈ [0,∞] there exists a sequence of distributions $\mathcal{P}_n$ converging to $\mathcal{P}$ with respect to the total variation distance and such that $\mathop {\lim }\limits_{n \to \infty } \mathop {\lim }\limits_{\alpha \to 1 + } H_\alpha \left( {\mathcal{P}_n } \right) = \mathop {\lim }\limits_{\alpha \to 1 + } \mathop {\lim }\limits_{n \to \infty } H_\alpha \left( {\mathcal{P}_n } \right) + r$ .  相似文献   

8.
LetA be any real symmetric positive definiten×n matrix, and κ(A) its spectral condition number. It is shown that the optimal convergence rate $$\rho _{SOR}^* = \mathop {\min }\limits_{0< \omega< 2} \rho (M_{SOR,\omega } )$$ of the successive overrelaxation (SOR) method satisfies $$\rho _{SOR}^* \leqslant 1 - \frac{1}{{\alpha _n \kappa (A)}}, \alpha _n \approx \log n.$$ This worst case estimate is asymptotically sharp asn→∞. The corresponding examples are given by certain Toeplitz matrices.  相似文献   

9.
A simple problem concerning evaluation of programs is shown to be nonelementary recursive. The problem is the following: Given an input-free programP (i.e. all variables are initially 0) without nested loops using only instructions of the formx ← 1, x ← x + y, \(x \leftarrow x\dot - y\) ,do x... end, doesP output 0? This problem has time complexity \(2^{2^{ {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} ^2 } } \) }cn-levels for some constantc. Other results are presented which show how the complexity of the 0-evaluation problem changes when the nonlooping instructions are varied. For example, it is shown that 0-evaluation is PSPACE-complete even for the case when the nonlooping instructions are onlyx ← x + 1,if x = 0then yy \(y \leftarrow y\dot - 1\) .  相似文献   

10.
The author considers Volterra Integral Equations of either of the two forms $$u(x) = f(x) + \int\limits_a^x {k(x - t)g(u(t))dt, a \leqslant } x \leqslant b,$$ wheref, k, andg are continuous andg satisfies a local Lipschitz condition, or $$u(x) = f(x) + \int\limits_a^x {\sum\limits_{j = 1}^m {c_j (x)g_j (t,u(t))dt} ,} $$ wheref,c j , andg j ,j=1,2,...,m, are continuous and eachg j satisfies a local Lipschitz condition in its second variable. It is shown that in each case the respective integral equation can be solved by conversion to a system of ordinary differential equations which can be solved by referring to a described FORTRAN subroutine. Subroutine VE1. In the case of the convolution equation, it is shown how VE1 converts the equation via a Chebyshev expansion, and a theorem is proved, and implemented in VE1, wherein the solution error due to truncation of the expansion can be simultaneously computed at the discretion of the user. Some performance data are supplied and a comparison with other standard schemes is made. Detailed performance data and a program listing are available from the author.  相似文献   

11.
LetK be a field and letL ∈ K n × n [z] be nonsingular. The matrixL can be decomposed as \(L(z) = \hat Q(z)(Rz + S)\hat P(z)\) so that the finite and (suitably defined) infinite elementary divisors ofL are the same as those ofRz + S, and \(\hat Q(z)\) and \(\hat P(z)^T\) are polynomial matrices which have a constant right inverse. If $$Rz + S = \left( {\begin{array}{*{20}c} {zI - A} & 0 \\ 0 & {I - zN} \\ \end{array} } \right)$$ andK is algebraically closed, then the columns of \(\hat Q\) and \(\hat P^T\) consist of eigenvectors and generalized eigenvectors of shift operators associated withL.  相似文献   

12.
F. Costabile 《Calcolo》1974,11(2):191-200
For the Tschebyscheff quadrature formula: $$\int\limits_{ - 1}^1 {\left( {1 - x^2 } \right)^{\lambda - 1/2} f(x) dx} = K_n \sum\limits_{k = 1}^n {f(x_{n,k} )} + R_n (f), \lambda > 0$$ it is shown that the degre,N, of exactness is bounded by: $$N \leqslant C(\lambda )n^{1/(2\lambda + 1)} $$ whereC(λ) is a convenient function of λ. For λ=1 the complete solution of Tschebyscheff's problem is given.  相似文献   

13.
We prove exact boundary controllability for the Rayleigh beam equation ${\varphi_{tt} -\alpha\varphi_{ttxx} + A\varphi_{xxxx} = 0, 0 < x < l, t > 0}$ with a single boundary control active at one end of the beam. We consider all combinations of clamped and hinged boundary conditions with the control applied to either the moment ${\varphi_{xx}(l, t)}$ or the rotation angle ${\varphi_{x}(l, t)}$ at an end of the beam. In each case, exact controllability is obtained on the space of optimal regularity for L 2(0, T) controls for ${T > 2l\sqrt{\frac{\alpha}{A}}}$ . In certain cases, e.g., the clamped case, the optimal regularity space involves a quotient in the velocity component. In other cases, where the regularity for the observed problem is below the energy level, a quotient space may arise in solutions of the observed problem.  相似文献   

14.
K. J. Förster  K. Petras 《Calcolo》1994,31(1-2):1-33
For ultraspherical weight functions ωλ(x)=(1–x2)λ–1/2, we prove asymptotic bounds and inequalities for the variance Var(Q n G ) of the respective Gaussian quadrature formulae Q n G . A consequence for a large class of more general weight functions ω and the respective Gaussian formulae is the following asymptotic result, $$\mathop {lim}\limits_{n \to \infty } n \cdot Var\left( {Q_n^G } \right) = \pi \int_{ - 1}^1 {\omega ^2 \left( x \right)\sqrt {1 - x^2 } dx.} $$   相似文献   

15.
The discrete logarithm problem modulo a composite??abbreviate it as DLPC??is the following: given a (possibly) composite integer n??? 1 and elements ${a, b \in \mathbb{Z}_n^*}$ , determine an ${x \in \mathbb{N}}$ satisfying a x ?=?b if one exists. The question whether integer factoring can be reduced in deterministic polynomial time to the DLPC remains open. In this paper we consider the problem ${{\rm DLPC}_\varepsilon}$ obtained by adding in the DLPC the constraint ${x\le (1-\varepsilon)n}$ , where ${\varepsilon}$ is an arbitrary fixed number, ${0 < \varepsilon\le\frac{1}{2}}$ . We prove that factoring n reduces in deterministic subexponential time to the ${{\rm DLPC}_\varepsilon}$ with ${O_\varepsilon((\ln n)^2)}$ queries for moduli less or equal to n.  相似文献   

16.
Mirrorsymmetric matrices, which are the iteraction matrices of mirrorsymmetric structures, have important application in studying odd/even-mode decomposition of symmetric multiconductor transmission lines (MTL). In this paper we present an efficient algorithm for minimizing ${\|AXB-C\|}$ where ${\|\cdot\|}$ is the Frobenius norm, ${A\in \mathbb{R}^{m\times n}}$ , ${B\in \mathbb{R}^{n\times s}}$ , ${C\in \mathbb{R}^{m\times s}}$ and ${X\in \mathbb{R}^{n\times n}}$ is mirrorsymmetric with a specified central submatrix [x ij ] ri, jn-r . Our algorithm produces a suitable X such that AXB = C in finitely many steps, if such an X exists. We show that the algorithm is stable any case, and we give results of numerical experiments that support this claim.  相似文献   

17.
We relate the exponential complexities 2 s(k)n of $\textsc {$k$-sat}$ and the exponential complexity $2^{s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))n}$ of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ (the problem of evaluating quantified formulas of the form $\forall\vec{x} \exists\vec{y} \textsc {F}(\vec {x},\vec{y})$ where F is a 3-cnf in $\vec{x}$ variables and $\vec{y}$ variables) and show that s(∞) (the limit of s(k) as k→∞) is at most $s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))$ . Therefore, if we assume the Strong Exponential-Time Hypothesis, then there is no algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ running in time 2 cn with c<1. On the other hand, a nontrivial exponential-time algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ would provide a $\textsc {$k$-sat}$ solver with better exponent than all current algorithms for sufficiently large k. We also show several syntactic restrictions of the evaluation problem $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ have nontrivial algorithms, and provide strong evidence that the hardest cases of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ must have a mixture of clauses of two types: one universally quantified literal and two existentially quantified literals, or only existentially quantified literals. Moreover, the hardest cases must have at least n?o(n) universally quantified variables, and hence only o(n) existentially quantified variables. Our proofs involve the construction of efficient minimally unsatisfiable $\textsc {$k$-cnf}$ s and the application of the Sparsification lemma.  相似文献   

18.
In this paper, we give the first construction of a pseudorandom generator, with seed length O(log n), for CC0[p], the class of constant-depth circuits with unbounded fan-in MOD p gates, for some prime p. More accurately, the seed length of our generator is O(log n) for any constant error ${\epsilon > 0}$ . In fact, we obtain our generator by fooling distributions generated by low-degree polynomials, over ${\mathbb{F}_p}$ , when evaluated on the Boolean cube. This result significantly extends previous constructions that either required a long seed (Luby et al. 1993) or could only fool the distribution generated by linear functions over ${\mathbb{F}_p}$ , when evaluated on the Boolean cube (Lovett et al. 2009; Meka & Zuckerman 2009). En route of constructing our PRG, we prove two structural results for low-degree polynomials over finite fields that can be of independent interest.
  1. Let f be an n-variate degree d polynomial over ${\mathbb{F}_p}$ . Then, for every ${\epsilon > 0}$ , there exists a subset ${S \subset [n]}$ , whose size depends only on d and ${\epsilon}$ , such that ${\sum_{\alpha \in \mathbb{F}_p^n: \alpha \ne 0, \alpha_S=0}|\hat{f}(\alpha)|^2 \leq \epsilon}$ . Namely, there is a constant size subset S such that the total weight of the nonzero Fourier coefficients that do not involve any variable from S is small.
  2. Let f be an n-variate degree d polynomial over ${\mathbb{F}_p}$ . If the distribution of f when applied to uniform zero–one bits is ${\epsilon}$ -far (in statistical distance) from its distribution when applied to biased bits, then for every ${\delta > 0}$ , f can be approximated over zero–one bits, up to error δ, by a function of a small number (depending only on ${\epsilon,\delta}$ and d) of lower degree polynomials.
  相似文献   

19.
H. Hong 《Computing》1996,56(4):371-383
Let the two dimensional scalar advection equation be given by $$\frac{{\partial u}}{{\partial t}} = \hat a\frac{{\partial u}}{{\partial x}} + \hat b\frac{{\partial u}}{{\partial y}}.$$ We prove that the stability region of the MacCormack scheme for this equation isexactly given by $$\left( {\hat a\frac{{\Delta _t }}{{\Delta _x }}} \right)^{2/3} + \left( {\hat b\frac{{\Delta _t }}{{\Delta _x }}} \right)^{2/3} \leqslant 1$$ where Δ t , Δ x and Δ y are the grid distances. It is interesting to note that the stability region is identical to the one for Lax-Wendroff scheme proved by Turkel.  相似文献   

20.
Dr. R. Kemp 《Computing》1980,25(3):209-232
In this paper we generalize a result of de Bruijn, Knuth und Rice concerning the average height of planted plane trees withn nodes. First we compute the number of allr-typly rooted planted plane trees (r-trees) withn nodes and height less than or equal tok. Assuming that all planted plane trees withn nodes are equally likely, we show, that in the average a planted plane tree is a 3-tree for largen; for this distribution we compute also the cumulative distribution function and the variance. Finally, we shall derive an exact expression and its asymptotic equivalent for the average height \(\bar h_r \) (n) of anr-tree withn nodes. We obtain for all ε>0 $$\bar h_r (n) = \sqrt {\pi n} - \frac{1}{2}(r - 2) + O(1n(n)/n^{1/2 - \varepsilon } ).$$   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号