首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shear viscosity coefficients of saturated and compressed liquid normal butane and isobutane have been measured with the torsional piezoelectric crystal method at temperatures beween 115 and 300 K and at pressures to 30 MPa. The measurements have been correlated with a modified Hildebrand equation. The experimental error is estimated to be smaller than 3%. The measurements of normal butane and isobutane have been compared with a global extended corresponding states model and with each other. Differences between measured and calculated viscosities are discussed.  相似文献   

2.
3.
Densities and viscosities of mixtures of 2-amino-2-methyl-1,3-propanediol (AMPD)–water were measured at temperatures of 30, 40, 50, 60, and 70°C. The solubility of N2O in the aqueous AMPD solutions was measured at temperatures of 30, 40, and 50°C. The concentrations selected for study were 10, 20, and 30 mass% AMPD for all three temperatures. The experimental values for density and viscosity were correlated as functions of temperature. The maximum deviations were less than 0.005% for densities and 0.3% for viscosities.  相似文献   

4.
Two kinds of equilibrium measurements of binary R-32/134a mixtures were carried out. The vapor-liquid equilibria were measured by the static method in the temperature range between 283 and 313 K. On the basis of the present experimental data, the temperature dependence of the binary interaction parameterk 12 for two equations of state, namely, the Soave-Redlich-Kwong equation and Carnahan-Starling-De Santis equation, was discussed. The vapor-liquid coexistence curve near the critical point was also measured by the observation of meniscus disappearance. The critical temperatures and critical densities of 30 and 70 wt% R-32 mixtures were determined on the basis of the saturation densities along the coexistence curve in the critical region. In addition, a correlation of the critical locus for this mixture is proposed as a function of composition.Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–24, 1994, Boulder, Colorado, U.S.A.  相似文献   

5.
Liquid viscosity and density of six binary mixtures of HFC-134a with glycols [ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol (400), and polypropylene glycol (2000)] have been measured in the temperature range from 273 to 333 K. The viscosity was measured by a rolling-ball viscometer calibrated with standard liquids of viscosities and densities (JS5, JS10, JS20, and JS50). The density was measured with a glass pycnometer. The uncertainties of the measurements were estimated to be less than 3.4 % for viscosity and 0.04 % for density, respectively. An equation is given to represent the obtained viscosity values as a function of weight fraction and temperature.  相似文献   

6.
A modified capillary tube method has been used to measure viscosities for HFC32 over a temperature range from -20 to 90°C and a pressure range from 0.1 to 5.3 M Pa, and for the liquid mixtures of HFC-32 with a synthetic polyolester oil at temperatures from 20 to 75°C and oil mass fractions from 0.44 to 1. Estimated uncertainties in the measured viscosities do not exceed ± 1.2 and ± 1.8°% for the pure fluocarbon and the mixtures, respectively. It is found that viscosity isotherms for HFC-32 at subcritical temperatures exhibit a minimum with increasing pressure, with the viscosity decreasing as much as 10% relative to its value at one atmosphere. Correlations are presented for dilute gas viscosities, excess viscosities, and saturated liquid and vapor viscosities. These correlations are shown to lit our data within experimental uncertainties. For HFC-32/lubricant mixtures, a free-volume viscosity model has been applied to correlate the experimental data.Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–24, 1994, Boulder, Colorado, U.S.A.  相似文献   

7.
The viscosities of pure gaseous carbon dioxide and argon+carbon dioxide mixtures have been measured with a capillary flow viscometer. The viscosities are relative to those of argon, in the temperature range 213 to 353 K, and considered accurate to ±0.7%. The pure-component viscosities agree closely with previous measurements. The mixture viscosities are used to calculate interaction viscosities and binary diffusion coefficients, which are compared with previous measurements. Interaction viscosities have been calculated, by use of the Mason-Monchick approximation, from the anisotropic pair potential energy functions for the unlike interaction proposed by Pack and his co-workers and by Hough and Howard. Comparison of these calculated interaction viscosities with those derived from our experiments and the higher-temperature measurements of Hobley, Matthews, and Townsend proves to be a powerful discriminant for the proposed anisotropic potential functions.Paper dedicated to Professor Joseph Kestin.  相似文献   

8.
The PVT properties of pure ethanol were measured in the near-critical and supercritical regions. Measurements were made using a constant-volume piezometer immersed in a precision thermostat. The uncertainty of the density measurements was estimated to be 0.15%. The uncertainties of the temperature and pressure measurements were, respectively, 15 mK and 0.05%. Measurements were made along various near-critical isotherms between 373 and 673 K and at densities from 91.81 to 497.67 kg · m−3. The pressure range was from 0.226 to 40.292 MPa. Using two-phase PVT results, the values of the saturated-liquid and -vapor densities and the vapor pressure for temperatures between 373.15 and 513.15 K were obtained by means of an analytical extrapolation technique. The measured PVT data and saturated properties for pure ethanol were compared with values calculated from a fundamental equation of state and correlations, and with experimental data reported by other authors. The values of the critical parameters (T C,P C,ρ C) were derived from the measured values of saturated densities and vapor pressure near the critical point. The derived values of the saturated densities near the critical point for ethanol were interpreted in term of the “complete scaling” theory.  相似文献   

9.
The isochoric heat capacity of two binary (CO2+n-decane) mixtures (0.095 and 0.178 mole fraction of n-decane) have been measured with a high- temperature, high-pressure, nearly constant volume adiabatic calorimeter. Measurements were made at nineteen near-critical liquid and vapor densities between 87 and 658 kg·m−3 for the composition of 0.095 mole fraction n-decane and at nine densities between 83 and 458 kg·m−3 for the composition of 0.178 mole fraction n-decane. The range of temperatures was 295 to 568 K. These temperature and density ranges include near- and supercritical regions. The measurements were performed in both one- and two-phase regions including the vapor + liquid coexistence curve. The uncertainty of the heat- capacity measurements is estimated to be 2% (coverage factor k=2). The uncertainty in temperature is 15 mK, and that for density measurements is 0.06%. The liquid and vapor one- and two-phase isochoric heat capacities, temperatures (T S), and densities (ρS) at saturation were measured by using the well-established method of quasi-static thermograms for each filling density. The critical temperatures (T C), the critical densities (ρC), and the critical pressure (P C) for the CO2+n-decane mixtures were extracted from the isochoric heat-capacity measurements on the coexistence curve. The observed isochoric heat capacity along the critical isochore of the CO2+n-decane mixture exhibits a renormalization of the critical behavior of C V X typical for mixtures. The values of the characteristic parameters (K 1, K 2), temperatures (τ12), and the characteristic density differences were estimated for the CO2+n-decane mixture by using the critical-curve data and the theory of critical phenomena in binary mixtures. The ranges of conditions were defined on the T-x plane for the critical isochore and the ρ-x plane for the critical isotherm, for which we observed renormalization of the critical behavior for the isochoric heat capacity.  相似文献   

10.
The thermal conductivities of carbon dioxide and three mixtures of carbon dioxide and methane at six nominal temperatures between 300 and 425 K have been measured as a function of pressure up to 12 MPa. The measurements were made with a transient hot-wire apparatus. The relative uncertainty of the reported thermal conductivities at a 95% confidence level is estimated to be ±1.2%. Results of the low-density analysis of the obtained data were used to test expressions for predicting the thermal conductivity of nonpolar mixtures in a dilute-gas limit developed by Schreiber, Vesovic, and Wakeham. The scheme was found to underestimate the experimental thermal conductivity with deviations not exceeding 5%. The dependence of the thermal conductivity on density was used to test the predictive scheme for the thermal conductivity of gas mixtures under pressure suggested by Mason et al. and improved by Vesovic and Wakeham. Comparisons reveal a pronounced critical enhancement on isotherms at 300 and 325 K for mixtures with methane mole fractions of 0.25 and 0.50. For other states, comparisons of the experimental and predicted excess thermal conductivity contributions showed a smaller increase of the experimental data with deviations approaching 3% within the examined range of densities.  相似文献   

11.
The viscosities of liquid mixtures of n-butane, n-hexane, and n-octane with squalane that represent model mixtures of refrigerants with refrigeration oil were measured at temperatures between 273.15 and 333.15 K, and at pressures from 0.1 to 30 MPa, by using a falling body viscometer. The uncertainty of the measurements was estimated to be no larger than 2.9%. The experimental viscosity values were fitted to a Tait-like equation within 2.8%. There are larger deviations between the experimental data and calculated values predicted by the equation of Kanti et al., which is derived from the Flory theory. By introducing an interaction parameter of the energetic mixing rule into the equation, the deviations were significantly reduced.  相似文献   

12.
In this work, viscosities of binary mixtures of isomeric chlorobutanes with diisopropylether have been determined as a function of composition under atmospheric pressure and in the temperature range from 283.15 K to 313.15 K with steps of 5 K. Kinematics viscosities were measured using an Ubbelohde viscosimeter; absolute viscosities were obtained from kinematic viscosities and densities. Finally, we have used the Asfour method for predicting the dependence of viscosity with composition and comparing it with our experimental data.  相似文献   

13.
The liquid viscosities and densities of two binary mixtures of methanol with ethanol and 1-propanol were measured in the temperature range from 273.15 to 333.15 K with a capillary viscometer and a glass pycnometer, respectively. The uncertainties in the measured viscosities were estimated to be smaller than 1.3%. The experimental viscosity values could be fitted to the Mertsch and Wolf equation within 2%.  相似文献   

14.
The densities, ρ, viscosities, η, ultrasonic speeds, u, and refractive indices, n D, of pure benzene, methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA), styrene (STY), and their binary liquid mixtures have been measured over the entire composition range at 298.15 K, 303.15 K, 308.15 K, and 313.15 K. The experimental data have been used to calculate excess molar volumes. Partial molar volumes of MA/EA/BA/STY in benzene at infinite dilution and at different temperatures have also been evaluated. The results were discussed in terms of molecular interactions prevailing in the mixtures.  相似文献   

15.
A new capillary viscometer has been constructed and the viscosities of methanol, 2-methyl-2-propanol, and their mixtures have been measured at two temperatures, 303 and 323 K, and at pressures up to 30 MPa. Simple empirical equations are given to represent the pressure and composition dependences of the viscosity within the experimental uncertainty of ±2%.  相似文献   

16.
We present an equation of state for the thermodynamic properties of mixtures of methane and ethane in the critical region that incorporates the crossover from singular thermodynamic behavior near the locus of vapor-liquid critical points to regular thermodynamic behavior outside the critical region. The equation of state yields a satisfactory representation of the thermodynamic-property data for the mixtures in a large range of temperatures and densities.  相似文献   

17.
The shear viscosities of saturated and compressed fluid 1-chloro-l,2,2,2-tetrafluoroethane (R124) and pentafluoroethane (R125) have been measured with two torsional crystal viscometers at temperatures between 120 and 420 K and at pressures up to 50 MPa. At small molar volumes, the fluidity (reciprocal viscosity) increases linearly with molar volume at fixed temperature and weakly with temperature at fixed volume. We have described this behavior with simple empirical equations and have compared the data of Shankland and of Ripple with them. The data of Ripple are in good agreement with our data for both fluids.  相似文献   

18.
It is demonstrated that the Taylor dispersion method can be used to measure the mutual diffusivity of liquid mixtures near a critical mixing point. For this purpose we have measured the mutual diffusivity of a liquid mixture of n-hexane and nitrobenzene at the critical composition at temperatures from 16 K down to 1 K above the critical temperature. The results are in agreement with the theoretically predicted behavior of the diffusivity near a critical point of mixing.  相似文献   

19.
The densities, viscosities, sound speeds, and relative permittivities for four binary mixtures of glycols+organic solvents that are miscible over the complete composition range, namely, diethylene glycol (DEG)+nitrobenzene and triethylene glycol (TEG)+chlorobenzene, +bromobenzene, and +nitrobenzene have been measured at atmospheric pressure and at temperatures from 298.15 to 313.15 K. The excess molar volumes are calculated and fitted with a Redlich–Kister type equation. The qualitative analysis of excess molar volumes revealed that the structure-making effects probably in the form of weak Cl· · ·H–O hydrogen bonding, Cl· · ·O electron acceptor–donor interactions, and interstitial accommodation of chlorobenzene in associate structures of triethylene glycol, etc. are predominant in these mixtures.  相似文献   

20.
Viscosity coefficients for binary mixtures of hexafluorobenzene with benzene, toluene, para-xylene, and mesitylene have been measured along the saturation line at temperatures from 15 to 120°C using specially designed capillary viscometers. Densities were measured using a pyknometer and volume-change apparatus. Deviations of the viscosities from a rectilinear dependence on mole fraction are consistent with enhanced interactions between unlike species, which increase with increasing number of methyl groups on the aromatic hydrocarbon and decrease with increasing temperature. The application of the Grunberg and Nissan equation, the Hildebrand equation, and energy of activation theories to these results is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号