首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
泛频(△v=2)CO激光器可以输出2.8~4μm的准连续可调激光,腔内单线最大激光振荡功率可达4W。将纵向共振光声池放入双能级跃迁CO激光器光学谐振腔内,构成了高灵敏度的光声光谱仪。利用该光谱仪对低浓度的甲烷(CH4)气体作了光声测量。由于气体吸收线与CO激光器谱线有较好的重合性,以及较强的腔内激光功率,该系统对CH4气体的极限检测灵敏度达到0.1ppb(10^-10)。  相似文献   

2.
搭建了基于2.3μm中红外可调谐二极管激光器的CO气体的光声光谱测量系统,并选取4300.699 cm~(-1)处的CO吸收谱线作为传感目标。为了消除较长的CO分子弛豫时间对测量的影响,采用在实验气体中混入水汽的方式来增强光声信号。通过优化调制参数确定出系统的最佳调制振幅和调制频率分别为4.29 cm~(-1)和785 Hz。在最优的实验条件下,所选谱线的二次谐波信号与CO浓度间具有良好的线性关系,其线性度为0.994,利用该关系反演出空气中CO的体积分数约为2.13×10~(-6)。最后利用Allan方差对干湿条件系统的长期稳定性进行了分析,得到系统在干湿条件下的探测极限分别为1.18×10~(-7)和0.58×10~(-7),验证了水汽的加入可以有效提高系统对CO的探测灵敏度。  相似文献   

3.
将喷管一维守恒气体动力学方程与振动弛豫方程联立,计算了燃烧驱动气动CO2激光器激光介质的小信号增益沿流场方向的变化;以及小信号增益分别随燃烧室温度、压强及不同组分配比的变化.计算结果表明,气动CO2激光器介质增益区较长且变化缓慢;较高的燃烧室温度、压强和CO2分子含量以及较低H2O含量是产生较高增益的必要条件.本文对气动CO2激光器介质小信号增益的计算结果,可为激光器光腔的设计以及燃料与高压空气的最佳配比提供参考.(OA13)  相似文献   

4.
超小型光泵远红外激光研究   总被引:8,自引:0,他引:8  
罗锡璋  林贻坤 《电子学报》1992,20(11):39-44
在求解NH_3分子三能级系统密度矩阵的基础上,用迭代法计算了长为10cm—1.5cm的5支超小型光泵远红外激光器(OPFIRL)的输出激光能量密度和频谱特性.实验研制的5支超小型OPFIRL成功地产生了远红外激光.研究表明:纵向腔效应和横向反馈效应对超小型OPFIRL激光输出有积极作用,对最佳工作气体压强和频谱特性有重要影响.  相似文献   

5.
光声光谱法是检测气体最灵敏的方法,气体浓度检测精度可达到ppt量级,但这需要复杂的实验系统和昂贵的器材,不利于在工程实践上使用.本文基于可调激光器的电流调制特性,提出了一种在测量气体吸收谱的吸收零点和吸收峰之间有效切换波长的简单调制方法.当激光功率为2.1 m W时,甲烷气体浓度的测量极限可达到0.46 ppm,测量结果证明了双波长法的可行性.  相似文献   

6.
基于波导CO2 激光器的光声光谱仪采用了激光谐振腔内置光声池结构、低噪声纵向共振光声池和计算机控制的多谱线多种气体成分测量分析系统。文中详细给出了波导CO2 激光器和光声池的设计参数 ,介绍了多种气体成分同时测量的原理和计算机控制测量软件的设计思想。实验中对有Brewster窗片和无窗片光声池的噪声特性和检测灵敏度极限作了分析比较。实验结果表明 ,该光谱仪对C2 H2 和O3的极限检测灵敏度分别达到 10 -11和 10 -9量级 ,能够对多种与大气污染和生物气体交换有关的微量气体进行高灵敏度、实时、连续、自动地监测。  相似文献   

7.
微机控制的高灵敏度激光光声光谱仪研究   总被引:8,自引:0,他引:8  
用计算机对基于CO CO2 激光器的光声光谱仪进行自动控制和数据处理 ,使得该光谱仪长时间连续自动测量及对多种气体成分同时测量成为可能 ,并进一步提高了光谱仪的检测灵敏度和长期运行的可靠性。系统性能检测实验结果表明 ,对乙烯气体浓度的检测极限可达到 14× 10 - 1 2 ;系统长期测量精度优于 2 %。利用该系统对苹果和樱桃西红柿果实在有氧、无氧和无氧后乙烯释放量的变化进行了长时间的连续监测  相似文献   

8.
光声光谱法是检测气体最灵敏的方法,气体浓度检测精度可达到ppt量级,但这需要复杂的实验系统和昂贵的器材,不利于在工程实践上使用.本文基于可调激光器的电流调制特性,提出了一种在测量气体吸收谱的吸收零点和吸收峰之间有效切换波长的简单调制方法.当激光功率为2.1 m W时,甲烷气体浓度的测量极限可达到0.46 ppm,测量结果证明了双波长法的可行性.  相似文献   

9.
光声光谱技术用于检测低浓度乙炔气体具有灵敏度高、连续和快速实时在线测量的特点.采用近红外可调谐掺铒光纤激光器(TEDFL)串接大功率掺铒光纤放大器(EDFA)作光源,采用一阶纵向共振式双程吸收光声池,并运用波长调制和二次谐波榆测技术,研制出一种新的高灵敏度微量气体近红外光声光谱分析仪.在常温常压下对低浓度乙炔气体的实验测量结果表明,该系统的极限检测灵敏度达到1.3×10-9,其线性响应相关度达到0.99957,能够满足工业、环境监测和电力系统等对乙炔检测和分析的需要.  相似文献   

10.
为了研究腔增强吸收光谱技术是否能用于NH3气体浓度的检测,采用扫描腔长的方法,以分布反馈式可调谐半导体激光器作光源,用两块高反射率平凹透镜(反射率约为99.9%,曲率半径约为1m)组成的光学谐振腔作吸收池,搭建腔增强吸收光谱装置。在34cm长的吸收池内测量NH3气体分子在1.5μm附近的弱吸收谱线;通过不断增加NH3气体浓度来改变腔内压强,每充入一次NH3都测量并保存一次吸收光谱。通过数据处理,分析谱线宽度随气体浓度变化的关系以及吸收度随腔内压强增加的变化情况,发现都能呈现出良好的线性关系,并对残差噪声进行统计分析,得到了3.3×10-8cm-1的最小探测灵敏度。结果表明,高探测灵敏度的腔增强吸收光谱技术,可以实现NH3气体浓度的测量,并能得到较好的探测精度。  相似文献   

11.
提出了一种新型的连续激光振铃吸收光谱方法,采用由高反射率腔镜组成的谐振腔作气体吸收池,通过压电晶体对谐振腔以4Hz频率进行扫描调制,对连续波激发光源在一定光谱范围内以0.001Hz的低重复频率进行同步光谱扫描,让振铃腔与激光频率形成共振.通过探测腔模的透射峰光强,获得光谱信息.采用该技术在0.5mbar的极低气压下,探测到CO2在6537cm^-1和6577cm^-1附近的弱吸收谱线(10^-27.10^26cm^-1/(molecute.cm^-2),其检测灵敏度远高于常规红外吸收光谱方法,为气态原子、分子和离子的微量探测提供了高灵敏度的光谱分析方法。  相似文献   

12.
在可调谐红外激光器的基础上发展的新的痕量气体监测分析方法,已在大气化学研究和污染气体监测领域中得到了应用.在无法通过增加光程长度来提高系统检测灵敏度的环境中,降低噪声、提高信噪比,是提高TDLAS二次谐波检测技术系统检测灵敏度的途径之一.介绍了TDLAS的噪声来源并对短吸收光程下的CO和CO2的近红外波段二次谐波进行了测量研究和噪声分析.获得CO和CO2的最小检测灵敏度分别为0.73%和0.98%.这一结果能够满足某些对于测量要求不是很高的情况下的环境监测的需要.  相似文献   

13.
利用光参量振荡器(OPO)实现了腔内增强吸收光谱(CEAS)。实验使用了线性吸收腔。利用压电陶瓷对吸收腔的反射镜进行扰动,得到光的输出。通过测量乙烷(C2H6)在2996.9μm附近的CEAS,确定了系统的检测灵敏度。在总的腔镜反射率为98.5%的情况下,系统的最小可检测吸收系数为2.3×10-5cm-1,相应的C2H6的测量极限为690ppb。  相似文献   

14.
在CO2激光泵浦的气体太赫兹源中,泵浦激光的频率稳定性控制问题十分关键。针对基于光声效应的泵浦源稳频技术,理论分析和数值模拟了光声信号的探测条件(光声腔内气压、传声器灵敏度等)对微弱光声信号检测的影响,进而对探测条件进行了优化。在此基础上,进一步分析了泵浦激光频率在气体吸收谱线中心频率附近漂移时光声信号的变化规律。结果表明:在实际工作中,为了实现高精度的稳频,需要将光声腔的气压控制在低压范围内,并采用高灵敏度的光声传感器;当泵浦激光频率产生漂移时,利用探测到的微弱光声信号通过反馈系统可以精确地改变激光器的腔长,以实现高精度的光声稳频,且频率漂移范围可控制在MHz量级以内。  相似文献   

15.
可调谐半导体激光光谱火灾气体探测系统   总被引:5,自引:1,他引:5  
基于火灾特征气体检测的火灾报警技术被认为是一种有着广阔前景的火灾早期探测手段,特别是利用光学吸收方法的火灾气体探测技术,除了能够提供高灵敏、低误报率的火灾报警外,还能够实现火灾的早期预警.提出了基于可调谐半导体激光吸收光谱技术的火灾气体高灵敏实时检测系统,采用光通信波段光纤耦合近红外分布反馈式(DFB)半导体激光器作为光源,利用两台激光器结合调制频率多路技术实现了火灾标志性气体CO,CO2的同时检测,对CO的最低检测限约为0.00375 mg/m3(3σ),能够满足火灾气体现场检测的需要.  相似文献   

16.
光纤气体传感检测技术研究   总被引:2,自引:0,他引:2  
光谱吸收型光纤气体传感器可以实现对气体的准确、快速、高灵敏度的检测,结合原理和典型系统综述了五种检测方法,其中单波长光谱吸收检测、差分检测、谐波检测技术发展得比较成熟,并且开始应用在石油化工等领域,而光腔衰荡光谱技术(CRDS)和有源腔气体检测技术是近几年刚兴起的新技术,具有实际吸收光程长,检测精度不受光源强度及其变化影响的特性,是很有发展潜力的光谱吸收检测技术。  相似文献   

17.
By adopting a distributed feedback laser (DFBL) centered at 1.654 µm, a near-infrared (NIR) methane (CH4) detection system based on tunable diode laser absorption spectroscopy (TDLAS) is experimentally demonstrated. A laser temperature control as well as wavelength modulation module is developed to control the laser’s operation temperature. The laser’s temperature fluctuation can be limited within the range of ?0.02—0.02 °C, and the laser’s emitting wavelength varies linearly with the temperature and injection current. An open reflective gas sensing probe is realized to double the absorption optical path length from 0.2 m to 0.4 m. Within the detection range of 0—0.01, gas detection experiments were conducted to derive the relation between harmonic amplitude and gas concentration. Based on the Allan deviation at an integral time of 1 s, the limit of detection (LoD) is decided to be 2.952×10-5 with a path length of 0.4 m, indicating a minimum detectable column density of ~1.2×10-5 m. Compared with our previously reported NIR CH4 detection system, this system exhibits some improvement in both optical and electrical structures, including the analogue temperature controller with less software consumption, simple and reliable open reflective sensing probe.  相似文献   

18.
差分吸收激光雷达探测大气CO_2精度分析   总被引:1,自引:0,他引:1  
为减小距离差分吸收激光雷达探测大气CO2浓度的探测误差,理论分析了探测精度,对差分吸收探测系统误差进行了数值分析,对基于1.6 μm光纤激光器相干探测CO2系统进行了仿真计算.结果表明:差分吸收截面越大,空间分辨率越低,回波信噪比越高,气体浓度的探测误差越小.当大气CO2的差分吸收光学厚度т为0.55时,相干探测系统具有最小误差变化百分比,此时探测精度最高.随着探测高度增大, 1.6 μm光纤激光相干探测系统精度逐渐降低,在1 km高度以内可以探测到34 ppm的大气CO2变化.  相似文献   

19.
范凤英  宋增云 《中国激光》2012,39(2):215002-226
采用波长2μm附近的可调谐半导体激光二极管作为光源,结合多步吸收光程和光纤传输技术,通过激光吸收光谱直接测量方法对CO2分子浓度进行测量研究。实验在标定了激光器调谐范围内17条CO2吸收谱线的波长及相应的吸收带跃迁的基础上,研究了不同压力下纯CO2气体在2008nm附近的吸收光谱,由吸收信号随气体压力的变化关系得到低气压下实验装置的系统刻度因子。并进一步对样品气体的CO2浓度进行测量,测量给出CO2分子浓度为(2.754±0.145)×1016 cm-3,测量误差主要来源于目前实验中所使用的气压计的精度和读数局限性。该研究为气体分子浓度测量、同位素含量分析提供了一种光谱测量方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号