首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 643 毫秒
1.
In order to identify the essential structural features and physicochemical properties for acetylcholinesterase (AChE) inhibitory activity in some carbamate derivatives, the systematic QSAR (Quantitative Structure Activity Relationship) studies (CoMFA, advance CoMFA and CoMSIA) have been carried out on a series of (total 78 molecules) taking 52 and 26 molecules in training and test set, respectively. Statistically significant 3D-QSAR (three-dimensional Quantitative Structure Activity Relationship) models were developed on training set molecules using CoMFA and CoMSIA and validated against test set compounds. The highly predictive models (CoMFA q(2)=0.733, r(2)=0.967, predictive r(2)=0.732, CoMSIA q(2)=0.641, r(2)=0.936, predictive r(2)=0.812) well explained the variance in binding affinities both for the training and the test set compounds. The generated models suggest that steric, electrostatic and hydrophobic interactions play an important role in describing the variation in binding affinity. In particular the carbamoyl nitrogen should be more electropositive; substitutions on this nitrogen should have high steric bulk and hydrophobicity while the amino nitrogen should be electronegative in order to have better activity. These studies may provide important insights into structural variations leading to the development of novel AChE inhibitors which may be useful in the development of novel molecules for the treatment of Alzheimer's disease.  相似文献   

2.
As a basis for predicting structural features that may lead to the design of more potent and selective inhibitors of choline acetyltransferase (ChAT), the three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were carried out on a series of trans-1-methyl-4-(1-naphthylvinyl)pyridinium (MNVP+) analogs, which are known ChAT inhibitors. 3D-QSAR studies were carried out using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. Since these inhibitors have extremely shallow potential energy minimum energy wells and low barriers to rotation, two dihedral angles unique to these inhibitors were systematically modified to reflect the energetically preferred conformations as determined by force field calculations. An optimum alignment rule was devised based on the conformations obtained from the molecular mechanics studies, using a common substructure alignment method. The studies involve a set of 21 compounds and experimentally determined molar IC50 values were used as the dependent variable in the analysis. The 3D-QSAR models have conventional r2-values of 0.953 and 0.954 for CoMFA and CoMSIA, respectively; similarly, cross-validated coefficient q2-values of 0.755 and 0.834 for CoMFA and CoMSIA, respectively, were obtained. On the basis of these predictive r2-values the model was tested using previously determined IC50 values. CoMSIA 3D-QSAR yielded better results than CoMFA.  相似文献   

3.
In the present study, a series of 179 quinoline and quinazoline heterocyclic analogues exhibiting inhibitory activity against Gastric (H+/K+)-ATPase were investigated using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA) methods. Both the models exhibited good correlation between the calculated 3D-QSAR fields and the observed biological activity for the respective training set compounds. The most optimal CoMFA and CoMSIA models yielded significant leave-one-out cross-validation coefficient, q(2) of 0.777, 0.744 and conventional cross-validation coefficient, r(2) of 0.927, 0.914 respectively. The predictive ability of generated models was tested on a set of 52 compounds having broad range of activity. CoMFA and CoMSIA yielded predicted activities for test set compounds with r(pred)(2) of 0.893 and 0.917 respectively. These validation tests not only revealed the robustness of the models but also demonstrated that for our models r(pred)(2) based on the mean activity of test set compounds can accurately estimate external predictivity. The factors affecting activity were analyzed carefully according to standard coefficient contour maps of steric, electrostatic, hydrophobic, acceptor and donor fields derived from the CoMFA and CoMSIA. These contour plots identified several key features which explain the wide range of activities. The results obtained from models offer important structural insight into designing novel peptic-ulcer inhibitors prior to their synthesis.  相似文献   

4.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed using comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) on a series of agonists of thyroid hormone receptor beta (TRbeta), which may lead to safe therapies for non-thyroid disorders while avoiding the cardiac side effects. The reasonable q(2) (cross-validated) values 0.600 and 0.616 and non-cross-validated r(2) values of 0.974 and 0.974 were obtained for CoMFA and CoMSIA models for the training set compounds, respectively. The predictive ability of two models was validated using a test set of 12 molecules which gave predictive correlation coefficients (r(pred)(2)) of 0.688 and 0.674, respectively. The Lamarckian Genetic Algorithm (LGA) of AutoDock 4.0 was employed to explore the binding mode of the compound at the active site of TRbeta. The results not only lead to a better understanding of interactions between these agonists and the thyroid hormone receptor beta but also can provide us some useful information about the influence of structures on the activity which will be very useful for designing some new agonist with desired activity.  相似文献   

5.
6.
A number of CCK(2) antagonists have been reported to play an important role in controlling gastric acid-related conditions, nervous system related disorders and certain types of cancer. To obtain the helpful information for designing potent antagonists with novel structures and to investigate the quantitative structure-activity relationship of a group of 62 different CCK(2) receptor antagonists with varying structures and potencies, CoMFA, CoMSIA, and HQSAR studies were carried out on a series of 1,3,4-benzotriazepine-based CCK(2) receptor antagonists. QSAR models were derived from a training set of 49 compounds. By applying leave-one-out (LOO) cross-validation study, cross-validated (r(cv)(2)) values of 0.673 and 0.608 and non-cross-validated (r(ncv)(2)) values of 0.966 and 0.969 were obtained for the CoMFA and CoMSIA models, respectively. The predictive ability of the CoMFA and CoMSIA models was determined using a test set of 13 compounds, which gave predictive correlation coefficients (r(pred)(2)) of 0.793 and 0.786, respectively. HQSAR was also carried out as a complementary study, and the best HQSAR model was generated using atoms, bonds, hydrogen atoms, and chirality as fragment distinction with fragment size (2-5) and six components showing r(cv)(2) and r(ncv)(2) values of 0.744 and 0.918, respectively. CoMFA steric and electrostatic, CoMSIA hydrophobic and hydrogen bond acceptor fields, and HQSAR atomic contribution maps were used to analyze the structural features of the datasets that govern their antagonistic potency.  相似文献   

7.
Molecular modeling by 3D-QSAR comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were employed on a series of phenylaminopyrimidine-based (PAP) Bcr-Abl inhibitors. The chemical structures of 63 PAP analogues were aligned using a template extracted from the crystal structure of STI571 bound to Abl kinase. Subsequently, the structures built were divided into training and test sets that include 53 and 10 compounds, respectively. Statistical results showed that the 3D-QSAR models generated from CoMSIA were superior to CoMFA (CoMSIA; q2=0.66, r2=0.94, N=3, F=139.09, r2pred=0.64 while CoMFA; q2=0.53, r2=0.73, N=3, F=43.53, r2pred=0.61). Based on the contour interpretation, the attachment of hydrophobic and bulky groups to the phenyl and pyrrolidine (D- and E-ring of NS-187, respectively) along with highly electronegative groups around the D-ring are important structural features for the design of second-generation Bcr-Abl inhibitors. The generated models are predictive based on reproducible values of the predicted compared with experimental activities in the test set. Further, the complementary analysis of contour maps to the Bcr-Abl binding site suggested the anchor points for binding affinity.  相似文献   

8.
Aminoglycoside mimetics inhibit bacterial translation by interfering with the ribosomal decoding site. To elucidate the structural properties of these compounds important for antibacterial activity, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were applied to a set of 56 aminoglycosides mimetics. The successful CoMFA model yielded the leave-one-out (LOO) cross-validated correlation coefficient (q(2)) of 0.708 and a non-cross-validated correlation coefficient (r(2)) of 0.967. CoMSIA model gave q(2)=0.556 and r(2)=0.935. The CoMFA and CoMSIA models were validated with 36 test set compounds and showed a good r(pred)(2) of 0.624 and 0.640, respectively. Contour maps of the two QSAR approaches show that electronic effects dominantly determine the binding affinities. These obtained results were agreed well with the experimental observations and docking studies. The results not only lead to a better understanding of structural requirements of bacterial translation inhibitors but also can help in the design of novel bacterial translation inhibitors.  相似文献   

9.
10.
For targets belonging to the same family of receptors, inhibitors often act at more than one biological target and produce a synergistic effect. Separate CoMFA and CoMSIA models were developed from our data set for the KDR, cKit and Tie-2 inhibitors. These models showed excellent internal predictability and consistency, and validation using test-set compounds yielded a good predictive power for the pIC(50) value. The field contour maps (CoMFA and CoMSIA) corresponding to the KDR, cKit and Tie-2 kinase subtypes reflected the characteristic similarities and differences between these types. These maps provided valuable information to facilitate structural modifications of the inhibitor to increase selectivity for the KDR over cKit and Tie-2.  相似文献   

11.
A diverse set of 53 cyclooxygenase-2 (COX-2) inhibitors which were aligned in two different ways were subjected to CoMFA analysis. The first method of alignment of the molecules was based on the binding information sourced from the crystallographic study, from which CoMFA Model 1 was derived. The second mode of alignment was generated by docking the inhibitors in the binding pocket using the DOCK and AFFINITY suite of programs; this gave a second model. The CoMFA Model 2 was slightly better than Model 1 in terms of the statistical parameters r(2) and q(2). The two models could predict very well the activity of a test set of diverse molecules, with a predictive r(2) of 0.593 and 0.768, respectively. Besides the QSAR results, the docking studies give a deep insight into the H-bonding interactions between the inhibitors and residues in the active site of the enzyme, which can be exploited in designing better inhibitors. Useful ideas on activity improvement could be gleaned from these models.  相似文献   

12.
Several three-dimensional quantitative structure-activity relationship (3D-QSAR) models have been constructed using the comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and catalyst pharmacophore feature building programs for a series of 26 truncated ketoacid inhibitors designed particularly for exploring the P2 and P3 binding pockets of HCV NS3 protease. The structures of these inhibitors were built from a structure template extracted from the crystal structure of HCV NS3 protease. The structures were aligned through docking each inhibitor into the NS3 active site using program GOLD. The best CoMSIA model was identified from the stepwise analysis results and the corresponding pharmacophore features derived were used for constructing a pharmacophore hypothesis by the catalyst program. Pharmacophore features obtained by CoMFA and CoMSIA are found to be in accord with each other and are both mapped onto the molecular 5K surface of NS3 active site. These pharmacophore features were also compared with those obtained by the catalyst program and mapped onto the same NS3 molecular surface. The pharmacophore building process was also performed for 20 boronic acid based NS3 inhibitors characterized by a long hydrophobic side chain attached at position P2. This latter pharmacophore hypothesis built by the catalyst program was also mapped onto the molecular surface of NS3 active site to define a second hydrophobic feature at position P2. The possibility of using the pharmacophore features mapped P2 and P3 binding pocket to design more potent depeptidized NS3 inhibitors was discussed.  相似文献   

13.
To develop more potent JAK3 kinase inhibitors, a series of CP-690550 derivatives were investigated using combined molecular modeling techniques, such as 3D-QSAR, molecular docking and molecular dynamics (MD). The leave-one-out correlation (q2) and non-cross-validated correlation coefficient (r2) of the best CoMFA model are 0.715 and 0.992, respectively. The q2 and r2 values of the best CoMSIA model are 0.739 and 0.995, respectively. The steric, electrostatic, and hydrophobic fields played important roles in determining the inhibitory activity of CP-690550 derivatives. Some new JAK3 kinase inhibitors were designed. Some of them have better inhibitory activity than the most potent Tofacitinib (CP-690550). Molecular docking was used to identify some key amino acid residues at the active site of JAK3 protein. 10 ns MD simulations were successfully performed to confirm the detailed binding mode and validate the rationality of docking results. The calculation of the binding free energies by MMPBSA method gives a good correlation with the predicted biological activity. To our knowledge, this is the first report on MD simulations and free energy calculations for this series of compounds. The combination results of this study will be valuable for the development of potent and novel JAK3 kinase inhibitors.  相似文献   

14.
Many 3D QSAR methods require the alignment of the molecules in a dataset, which can require a fair amount of manual effort in deciding upon a rational basis for the superposition. This paper describes the use of FBSS, a program for field-based similarity searching in chemical databases, for generating such alignments automatically. The CoMFA and CoMSIA experiments with several literature datasets show that the QSAR models resulting from the FBSS alignments are broadly comparable in predictive performance with the models resulting from manual alignments.  相似文献   

15.
16.
Malaria is a fatal tropical and subtropical disease caused by the protozoal species Plasmodium. Many commonly available antimalarial drugs and therapies are becoming ineffective because of the emergence of multidrug resistant Plasmodium falciparum, which drives the need for the development of new antimalarial drugs. Recently, a series of 3-carboxyl-4(1H)-quinolone analogs, derived from the famous compound endochin, were reported as promising candidates for orally efficacious antimalarials. In this study, to analyze the structure–activity relationships (SAR) of these quinolones and investigate the structural requirements for antimalarial activity, the 2D multiple linear regressions (MLR) method and 3D comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods are employed to evolve different QSAR models. All these models give satisfactory results with highly accurate fitting and strong external predictive abilities for chemicals not used in model development. Furthermore, the contour maps from 3D models can provide an intuitive understanding of the key structure features responsible for the antimalarial activities. In conclusion, we summarize the detailed position-specific structural requirements of these derivatives accordingly. All these results are helpful for the rational design of new compounds with higher antimalarial bioactivities.  相似文献   

17.
18.
In this project, several docking conditions, scoring functions and corresponding protein-aligned molecular field analysis (CoMFA) models were evaluated for a diverse set of neuraminidase (NA) inhibitors. To this end, a group of inhibitors were docked into the active site of NA. The docked structures were utilized to construct a corresponding protein-aligned CoMFA models by employing probe-based (H+, OH, CH3) energy grids and genetic partial least squares (G/PLS) statistical analysis. A total of 16 different docking configurations were evaluated, of which some succeeded in producing self-consistent and predictive CoMFA models. However, the best model coincided with docking the ionized ligands into the hydrated form of the binding site via PLP1 scoring function (r2LOO=0.735, r2PRESS against 24 test compounds=0.828). The highest-ranking CoMFA models were employed to probe NA-ligand interactions. Further validation by comparison with a co-crystallized ligand-NA crystallographic structure was performed. This combination of docking/scoring/CoMFA modeling provided interesting insights into the binding of different NA inhibitors.  相似文献   

19.
用比较分子力场分析(CoMFA)法和比较分子相似性指数分析(CoMSIA)法,建立N,N-二甲基-2-溴苯乙胺类化合物的3D-QSAR模型。CoMFA模型中,其交叉验证系数q2=0.792,传统的相关系数R2=0.955(R=0.978),相应立体场贡献为77.4%、静电场贡献为22.6%,优于文献的报导。CoMSIA研究中,其交叉验证系数q2=0.757,传统的相关系数R2=0.917 (R=0.958),其疏水场、立体场、静电场贡献依次为:42.9%、39.5%、17.6%。用两种模型分别预测检测集分子的活性,结果与实验值较吻合。说明所建的模型具有较好的预测能力。通过分析CoMFA分子场等值线图,可为优化N,N-二甲基-2-溴苯乙胺类衍生物的结构提供理论指导。  相似文献   

20.
CoMFA and CoMSIA analysis were utilized in this investigation to define the important interacting regions in paclitaxel/tubulin binding site and to develop selective paclitaxel-like active compounds. The starting geometry of paclitaxel analogs was taken from the crystal structure of docetaxel. A total of 28 derivatives of paclitaxel were divided into two groups-a training set comprising of 19 compounds and a test set comprising of nine compounds. They were constructed and geometrically optimized using SYBYL v6.6. CoMFA studies provided a good predictability (q(2)=0.699, r(2)=0.991, PC=6, S.E.E.=0.343 and F=185.910). They showed the steric and electrostatic properties as the major interacting forces whilst the lipophilic property contribution was a minor factor for recognition forces of the binding site. These results were in agreement with the experimental data of the binding activities of these compounds. Five fields in CoMSIA analysis (steric, electrostatic, hydrophobic, hydrogen-bond acceptor and donor properties) were considered contributors in the ligand-receptor interactions. The results obtained from the CoMSIA studies were: q(2)=0.535, r(2)=0.983, PC=5, S.E.E.=0.452 and F=127.884. The data obtained from both CoMFA and CoMSIA studies were interpreted with respect to the paclitaxel/tubulin binding site. This intuitively suggested where the most significant anchoring points for binding affinity are located. This information could be used for the development of new compounds having paclitaxel-like activity with new chemical entities to overcome the existing pharmaceutical barriers and the economical problem associated with the synthesis of the paclitaxel analogs. These will boost the wide use of this useful class of compounds, i.e. in brain tumors as the most of the present active compounds have poor blood-brain barrier crossing ratios and also, various tubulin isotypes has shown resistance to taxanes and other antimitotic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号