首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Composite milk samples, in which milk from all 4 bovine quarters is collected in a single vial, are widely used in many developed dairy industries for detection of intramammary infections (IMI). These samples are more economical for use in culturing protocols than individual quarter samples, and may be useful when considering management options at the cow and herd level. The dilution effect may be problematic, however, resulting in lower sensitivity (Se) in IMI detection on composite samples. Relative Se and specificity (Sp) in composite samples have previously been described for some major pathogens, but because the causative organism for IMI is initially unknown, it is beneficial to investigate the reliability of composite samples for detection of all types of mastitis-causing bacteria. The Canadian Bovine Mastitis Research Network has a large data collection platform—the National Cohort of Dairy Farms—containing a vast amount of data on mastitis in Canada. These data have been used to further investigate the Se and Sp of composite samples in detecting IMI caused by specific mastitis pathogens. Milk samplings of selected cows before dry-off, after calving, and during lactation (n = 48,835 samples) were employed to this end. Composite samples showed moderately high Se for Staphylococcus aureus (77.1%, 95% CI = 73.3-80.5) and Streptococcus dysgalactiae (73.4%, 95% CI = 60.9-83.7), with moderate Se for Streptococcus uberis (62.1%, 95% CI = 49.3-73.8) and coagulase-negative staphylococci (59.8%, 95% CI = 58.4-61.2). Sensitivities always increased as the number of affected quarters increased. Composite samples also showed high Sp (>97%) for most organisms. Factors such as lactation number and stage of lactation were evaluated for their influence on the Se and Sp of composite sampling, but were only found to be significant for coagulase-negative staphylococci. Predictive values using the herd prevalences found across Canada were calculated and can be useful in field scenarios when composite sampling is employed to assist mastitis management. When used to detect newly occurring IMI in pairs of samples taken before dry-off, post-calving, and also prior to and subsequent to the dry period, composite samples were shown to have lower Se but similar Sp for all pathogens investigated. Composite samples can be used to detect IMI and new IMI in dairy cows, but the Se and Sp of the procedure should be taken into account.  相似文献   

2.
《Journal of dairy science》2021,104(9):10310-10323
Several reports have indicated that udder surface temperature (UST) can be a useful indicator of subclinical mastitis (SCM). The objective was to evaluate UST by infrared thermography (IRT) as a diagnostic tool for SCM and intramammary infection (IMI), and to assess the influence of environmental conditions in the potential diagnosis of this disease in dairy cows located at high-altitude tropical regions. A total of 105 cows (397 quarters) from 3 dairy farms with mechanical and manual milking methods were enrolled in the study. Subclinical mastitis was diagnosed when quarter samples had a somatic cell count (SCC) ≥200 × 103 cells/mL, microbial growth (MG) was defined when a major pathogen (≥1 cfu/plate) or Corynebacterium spp. (≥10 cfu/plate) was isolated, and IMI was defined as the presence of MG and SCC ≥100 × 103 cells/mL. Infrared images were taken with a thermal camera placed 1 m away from the udder, and shots of the rear and left and right lateral view were made during the morning milking, before any manipulation of the udder and employing dark cardboard on the contralateral side to avoid artifacts in the background. A multilevel mixed effects linear regression model clustered within cows and herd was performed to evaluate the associations with UST. Clinical performance was evaluated using the Youden index to establish the optimum UST thresholds, which were set at 32.6°C for any case definition when milking was by hand, at 33.7°C for MG, and at 34°C for SCM and IMI in machine-milked quarters. Sensitivity (Se), specificity (Sp), area under curve (AUC), and positive likelihood ratio (+LR) were also assessed. Test agreement was assessed by kappa coefficient (κ). The UST of healthy quarters ranged between (95% CI) 32.4 and 32.6°C, lower than SCM quarters (n = 88) at 32.9°C (95% CI: 32.7–33.1 °C), MG quarters (n = 56) at 33.5°C (95% CI: 33.3–33.7°C), and IMI quarters (n = 50) at 33.5°C (95% CI: 33.2–33.7 °C). The UST was also related to the milking method: higher temperatures were observed for hand milking (n = 90) compared with machine milking (n = 185). No relation between environmental conditions such as wind speed, atmospheric temperature, relative humidity, and temperature-humidity index and UST were observed during this study. For hand milking, the optimal UST threshold was 32.6°C; for SCM, Se = 0.53, Sp = 0.89, AUC = 0.71, κ = 0.4; for MG, Se = 0.83, Sp = 0.93, AUC = 0.88, κ = 0.77; and for IMI, Se = 0.82, Sp = 0.92, AUC = 0.87, κ = 0.74. The machine milking threshold for SCM resulted in Se = 0.42, Sp = 0.97, AUC = 0.70, κ = 0.47; for MG, Se = 0.82, Sp = 0.89, AUC = 0.85, κ = 0.60; and for IMI, Se = 0.82, Sp = 0.98, AUC = 0.90, κ = 0.79. These findings suggest that UST determined by IRT is higher in machine-milked cows and in quarters with MG and IMI than in healthy quarters; therefore, UST by IRT is a reliable, clinically useful method for MG and IMI diagnosis.  相似文献   

3.
This study was conducted to evaluate the association between subclinical intramammary infection (IMI) with coagulase-negative staphylococci (CNS), mammary quarter milk somatic cell count (SCC), and persistence of IMI in dairy cattle. Convenience samples of CNS isolates harvested from milk samples of subclinically infected mammary quarters collected between 4 and 2 wk before drying-off, between 2 wk before drying-off and the day of drying-off, within 24 h after calving, between 1 and 2 wk after calving, and during lactation were evaluated. Isolates were obtained from the Canadian Bovine Mastitis Research Network culture bank and were identified to the species level using rpoB gene sequencing. Cow and quarter-level data were obtained from the Canadian Bovine Mastitis Research Network database and used for statistical analyses. In addition, for mammary quarters that had more than one isolation of the same CNS species at different time points, the isolates were evaluated using pulsed-field gel electrophoresis to identify persistent IMI. Milk SCC was compared between mammary quarters infected with different CNS species and to a cohort of uninfected mammary quarters. A total of 877 isolates from 643 mammary quarters of 555 cows on 89 Canadian dairy farms were identified to the species level. Twenty different species were identified, with Staphylococcus chromogenes being the most common species identified (48% of isolates), followed by Staphylococcus simulans (19%) and Staphylococcus xylosus (10%). Of the 20 species identified, only 9 species were found in persistently infected quarters. Milk SCC was significantly higher in the CNS-infected mammary quarters than in the uninfected control quarters for 8 of the 20 species studied. Also, mean SCC differed significantly between mammary quarters infected with different CNS species. Within a given species, a high degree of variability was noted in milk SCC. These data corroborate recent data from Europe with regard to the predominance of certain species of CNS (e.g., Staph. chromogenes). In addition, some species of CNS appear to have a greater effect on milk SCC. Finally, some CNS species are associated with persistent IMI suggesting that some species (e.g., Staph. chromogenes and Staph. simulans) are better host-adapted, whereas others may have an environmental reservoir.  相似文献   

4.
The objective of the study was to evaluate the predictive ability of the herd dry period (DP) intramammary infection (IMI) incidence and elimination rates derived from predry and postcalving somatic cell count (SCC) measurements [quarter-level SCC and dairy herd improvement (DHI) composite-level SCC] for monitoring the herd DP IMI incidence and elimination rates. A cohort of 91 Canadian dairy herds was followed from 2007 to 2008. In each herd, a sample of 15 cows was selected each year, and a series of 2 predry and 2 postcalving quarter milk samples were collected. Routine milk bacteriological culture was conducted to identify IMI, SCC was measured on the quarter milk samples, and composite SCC of the last predry and first postcalving DHI tests were obtained. Mastitis pathogens were grouped into 3 categories: major pathogens, minor pathogens, and any pathogens. For each herd, DP bacteriological culture-derived IMI incidence and elimination rates were computed using quarter milk culture data. Similarly, SCC-derived herd incidence and elimination rates were computed using quarter and DHI composite-level SCC measurements and using various SCC thresholds to define new and eliminated IMI. Linear regression was used to compare herd quarter-level and composite-level SCC-derived herd incidence and elimination with DP bacteriological culture-derived IMI incidence and elimination. Herd DP incidences computed by using quarter-level SCC, and with most of the SCC thresholds tested, were significant predictors of the DP major, minor, and any IMI incidences (F-test; P ≤ 0.05). The highest coefficients of determination (R2) were obtained with thresholds of 200,000 (R2: 12%) and 50,000 cells/mL (R2: 25%) for predicting major and minor IMI, respectively. When using composite DHI SCC measurements, however, substantial losses of predictive power were seen for minor and any IMI incidences compared with quarter-level SCC. For DP major IMI incidence, composite SCC yielded similar, but modest, predictive power when a cutoff value of 150,000 cells/mL was chosen to define new IMI. To predict DP elimination rates, the value of quarter-level SCC seemed limited to predicting the DP major IMI elimination rate. Composite SCC, on the other hand, showed modest predictive power for major and minor IMI elimination rates, with thresholds of 200,000 and 50,000 cells/mL, respectively. Results from the current study suggest that quarter and composite SCC-derived rates could be used as substitutes for bacteriological culture-derived rates for some groups of mastitis pathogens.  相似文献   

5.
The diagnostic value of the determination of Staphylococcus aureus antibody titer in milk as a method for identification of mammary quarters with S. aureus IMI was evaluated. Ten cows with a history of S. aureus IMI and 9 cows with no history of S. aureus IMI were sampled daily for 10 d. Quarter and composite milk samples were collected and processed by standard methods for concentration of S. aureus, S. aureus antibody titer (percentage of positive laboratory control), and SCC (cells per milliliter). Microbiologic culture identified 13 S. aureus-infected quarters from the 10 cows with a history of S. aureus IMI. Only 2 of the 130 samples (1.5%) from these infected quarters had undetectable concentrations of S. aureus. Antibody titers in milk from infected quarters of infected cows were below the previously established level considered to be indicative of IMI in 6 of 130 samples (4.6%). Four samples from infected quarters of infected cows had titers considered to be in the suspect range. The sensitivity of the antibody test was 83% (13% SE) when the suspect samples were included and 86% (12% SE) when they were not. Milk from uninfected quarters of cows with S. aureus IMI tended to have S. aureus antibody titers greater than the test's positive control, which would suggest that the quarters were infected with S. aureus. Antibody titer was below the infection threshold level in all pooled samples of uninfected cows, suggesting that the test correctly identified all cows free of S. aureus IMI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Associations between values for the somatic cell count (SCC) or the California Mastitis Test (CMT) and intramammary infection (IMI) were studied in 131 dairy cows from three herds during the first 10 d post-calving. Intramammary infection was defined as the presence of one or two bacterial species in one or both quarter milk samples taken within 12 h of calving and at d 3 postcalving. Quarter milk samples identified IMI in 36% of glands. Values for SCC declined at a significantly faster rate over the first 10 d postcalving in non-infected quarters than in infected quarters. The usefulness of quarter milk SCC and CMT for screening was evaluated by calculating the sensitivity and specificity for various threshold values and days postcalving. A SCC threshold of 100,000 cells/ml for quarter samples evaluated on d 5 postcalving had the maximal sensitivity and specificity for detecting IMI. Evaluation of the CMT samples taken on d 3 postcalving using a threshold reaction of greater than zero had the highest sensitivity and specificity for detecting IMI. With this CMT sampling scheme, the sensitivities for detecting IMI with any pathogen, IMI with a major pathogen, and IMI with a minor pathogen were 56.7, 66.7, and 49.5, respectively. The CMT could have a useful role in dairy herd monitoring programs as a screening test to detect fresh cows with IMI caused by major pathogens.  相似文献   

7.
Subclinical mastitis (SCM) and intramammary infection (IMI) increase esterase activity in the glandular secretions of dairy cattle. Our objective was to evaluate the clinical performance of 3 commercially available esterase tests for diagnosing SCM and IMI. Foremilk samples were collected from 380 quarters (96 cows) at dry-off and from 329 quarters (83 cows) within 4 to 7 d after calving. Quarter somatic cell count (SCC) was measured using the reference method (DeLaval cell counter; De Laval International AB, Tumba, Sweden) with SCM defined as SCC >200,000 cells/mL. Bacterial culture of foremilk samples was used to diagnose IMI based on the growth of ≥100 cfu/mL. The SCC was estimated using 3 PortaSCC tests (PortaCheck, Moorestown, NJ) from the measured esterase activity and the California Mastitis Test (CMT). Clinical performance was evaluated using logistic regression to determine the area under the receiver operating characteristic curve (AUC) and identify test sensitivity (Se) and specificity (Sp) at the optimal cut-point for diagnosing SCM and IMI. Test agreement was also evaluated using the kappa coefficient (κ) and weighted κ. The PortaSCC color test was the best-performing PortaSCC test for diagnosing SCM at dry-off (AUC = 0.90, Se = 0.91, Sp = 0.81, κ = 0.71) and at freshening (AUC = 0.86, Se = 0.74, Sp = 0.95, κ = 0.72), at an optimal cut-point of ≥250,000 cells/mL but required 45 min to produce a result. For comparison, the CMT required 2 min to produce a result and a CMT score of trace or higher was superior to the PortaSCC color test for diagnosing SCM at dry-off (AUC = 0.95, Se = 0.95, Sp = 0.86, κ = 0.81) and freshening (AUC = 0.88, Se = 0.79, Sp = 0.95, κ = 0.76). The PortaSCC quick test was the best-performing PortaSCC test for diagnosing IMI at dry-off (AUC = 0.81, Se = 0.81, Sp = 0.78 κ = 0.40) and required 5 min to produce a result, whereas the PortaSCC color test was the best performing PortaSCC test for diagnosing IMI at freshening (AUC = 0.80, Se = 0.75, Sp = 0.79 κ = 0.38). For comparison, the CMT was inferior to the PortaSCC quick test for diagnosing IMI at dry-off (AUC = 0.73, Se = 0.76, Sp = 0.60, κ = 0.20) but was equivalent to the PortaSCC color test at freshening (AUC = 0.79, Se = 0.58, Sp = 0.93, κ = 0.50). The PortaSCC color and quick tests and CMT were considered good tests for diagnosing SCM and IMI because clinically useful tests typically have an AUC >0.80 and κ >0.6. Based on the test sensitivity, cost, and analysis time, there does not appear to be a persuasive reason to select the PortaSCC tests over the traditional CMT for diagnosing SCM and IMI.  相似文献   

8.
The purpose was to determine the association of milk California Mastitis Test (CMT), somatic cell concentration (SCC), and milk differential cell count results on day 3 postcalving with subsequent lactation production and health events. On d 3 postcalving, the CMT was performed and quarter milk samples were collected from 130 dairy cows. Quarter SCC and milk differential cell counts were determined. Microbiology on duplicate quarter milk samples was used to determine the presence of intramammary infection by major or minor pathogens. Production measures obtained using Dairy Herd Improvement Association testing were 150-d standardized and summit milks. Milk culture results on a cow basis included 82 (63.1%) samples with no growth, 31 (23.9%) with major pathogens, and 17 (13.1%) with minor pathogens. Milk culture results comparing cows with no growth to those with any growth (major or minor pathogens) were not associated with statistically significant differences in milk production. Milk culture results comparing cows with major pathogens to those with no growth and minor pathogens combined were associated with statistically significant differences in 150 d milk. Milk production did not differ for cows with CMT results above and below a cut-off of trace, and for SCC results above and below cut-offs of 200,000, 300,000, and 400,000/mL, respectively. Statistically significant differences in milk production were found for cows above and below cut-offs for percentage neutrophils in milk and for absolute neutrophil counts. Associations were found for milk production and number of quarters (0, 1, 2, or 3 and 4 combined) above respective cut-offs for SCC, percentage neutrophils in milk, and absolute numbers of neutrophils in milk, but not for CMT. Milk production differed for cows experiencing any health event versus those with no health event. The most commonly recorded health event was clinical mastitis. Statistically significant associations were detected between health events and milk culture results, SCC, neutrophil percentage, and neutrophil absolute counts. Results of the present investigation indicate that milk monitoring on d 3 of lactation using milk neutrophil percentage or neutrophil absolute counts may be useful as an indication of subsequent milk production.  相似文献   

9.
The main objective was to determine the prevalence of intramammary infections (IMI) in dairy cows in Flanders, Belgium. Data were obtained from quarter milk samples of dairy herds subjected to a mandatory yearly screening of all lactating cows. A total of 178,668 quarter milk samples were collected at 1087 cross-sectional dairy herd screenings performed in three consecutive years. Of the dairy cows, 40% had at least one culture-positive quarter. More than 50% of all IMI were caused by non-aureus staphylococci. Streptococcus agalactiae is almost eradicated in Flanders, whereas Staphylococcus aureus was isolated from 18% of the culture-positive quarters. In addition, the distribution of mastitis pathogens in quarter milk samples from selected dairy cows with an elevated somatic cell count (SCC) is described. From 6390 cows with a geometric mean composite SCC 250,000 cells/ml, nearly 65% had at least one culture-positive quarter. The majority of the IMI were caused by non-aureus staphylococci (41.1%), whereas Staph. aureus and aesculin-positive cocci were found in respectively 25% and 18% of the culture-positive milk samples. We conclude that more efforts are needed in the prevention and control of subclinical mastitis in Flanders. Non-aureus staphylococci are the predominant cause of IMI, warranting more research regarding the epidemiology and pathogenicity of those species.  相似文献   

10.
《Journal of dairy science》2021,104(9):10232-10249
To reduce antimicrobial use, infusion of antimicrobials into only infected cows at the end of lactation (selective dry cow therapy) is preferable to infusion of every cow with antimicrobials. Use of selective dry cow antimicrobial therapy requires differentiation of probably infected from uninfected cows to enable treatment allocation. Milk somatic cell count (SCC) has been used to distinguish between cows with and without intramammary infection (IMI). However, SCC may be influenced by milk yield, stage of lactation, breed, and herd-level variables such as prevalence of infection. Cut points for SCC, to distinguish between cows with and without an IMI, may need to differ between cow age groups and breeds, or among herds. This study evaluated associations between SCC and major pathogen IMI in one or more quarters of 2,606 cows from 36 herds in 4 regions of New Zealand. In the last week of lactation, cows selected at random had milk samples collected from each quarter, and the teat-end condition and hygiene of the udder were scored. Herd- and cow-level data including age, breed, milk volume, and SCC at each production were recorded, and bulk tank milk SCC and volume of milk shipped were collated. At cow level, the association between average, maximum, and last cow-composite SCC, and presence of a major pathogen IMI in one or more quarters of cows, was examined using receiver operator curves. Predictive logistic regression models were then developed that included potential effect modifiers such as age, milk yield, and bulk tank milk SCC. The population average prevalence of major pathogen IMI was 7.2% of cows (95% confidence interval = 5.9–8.6), and this varied significantly between herds. The average, maximum, and last cow-composite SCC of lactation were all predictive of presence of a major pathogen IMI and did not differ in their ability to discriminate infected from uninfected cows. However, the optimal cut points for the last SCC, the maximum SCC, and average SCC were 108, 152, and 105 × 1,000 cells/mL, respectively. Inclusion of age, bulk tank SCC, and history of clinical mastitis improved overall model fit. However, inclusion of these variables did not improve the discriminatory power of maximum cow-composite SCC used alone. We conclude that cow-composite SCC on its own resulted in sensitivities and specificities of between 0.76 and 0.86, and 0.71 to 0.80, respectively, for determination of presence of major pattern IMI, and the predictive value was not improved by addition of other predictor variables.  相似文献   

11.
Timely and objective diagnosis and classification of mastitis is crucial to ensure adequate management and therapeutic decisions. Analyzing specific biomarkers in milk could be advantageous compared with subjective or semiquantitative criteria, such as palpation of the udder in clinical mastitis cases or evaluation of somatic cell count using cow side tests (e.g., California Mastitis Test) in subclinical mastitis quarters. The objective of this study was to investigate the diagnostic value of 3 biomarkers; cathelicidin, milk amyloid A, and haptoglobin for the diagnosis of subclinical and clinical mastitis. Furthermore, the suitability of these biomarkers to differentiate between mild, moderate, and severe clinical mastitis and the influence of different pathogens on biomarker levels was tested. A total of 67 healthy cows, 119 cows with subclinical mastitis, and 212 cows with clinical mastitis were enrolled in the study. Although cathelicidin, haptoglobin, and milk amyloid A were measured in all samples from healthy cows and those with subclinical mastitis, haptoglobin, and cathelicidin results were only available from 121 out of 212 cows with clinical mastitis. Milk amyloid A was measured in all samples. In cows with clinical mastitis, the mastitic quarter and a second healthy quarter serving as a healthy in-cow control quarter were sampled. It was possible to differentiate between healthy quarters, quarters with subclinical mastitis, and quarters with clinical mastitis using all 3 biomarkers. Concerning cathelicidin, thresholds were 0.000 [sensitivity (Se) = 0.83, specificity (Sp) = 0.97] and 0.053 (Se = 0.98, Sp = 0.99) for normalized optical density at 450 nm (NOD450) for differentiating between healthy quarters and quarters with subclinical or clinical mastitis, respectively. Thresholds of 1.28 µg/mL (Se = 0.65, Sp = 0.76) and 1.81 µg/mL (Se = 0.77, Sp = 0.83) for milk amyloid A and 3.65 µg/mL (Se = 0.92, Sp = 0.94) and 5.40 µg/mL mL (Se = 0.96, Sp = 0.99) for haptoglobin were calculated, respectively. Healthy in-cow control quarters from cows with CM showed elevated milk amyloid A and haptoglobin levels compared with healthy quarters from healthy cows. Only the level of milk amyloid A was higher in severe clinical mastitis cases compared with mild ones. In contrast to clinical mastitis, cathelicidin and haptoglobin in subclinical mastitis quarters were significantly influenced by different bacteriological results. The measurement of cathelicidin, milk amyloid A, and haptoglobin in milk proved to be a reliable method to detect quarters with subclinical or clinical mastitis.  相似文献   

12.
《Journal of dairy science》2022,105(3):2453-2472
Intramammary infusion of antimicrobials at the end of lactation (dry cow therapy) has been a cornerstone of mastitis management for many years. However, as only a proportion of cows are infected at this time, treating only those cows likely to be infected is an important strategy to reduce antimicrobial usage and minimize risk of emergence of antimicrobial resistance. Such an approach requires the ability to discriminate between cows and quarters likely to be infected and uninfected. This study compared assignment of cows or quarters to antimicrobial treatment at the end of lactation based on cow composite somatic cell count (SCC; i.e., all quarters of cows with a maximum SCC across lactation >200,000 cells/mL received an antimicrobial; n = 891 cows, SCC-group) or assignment to quarter-level treatment based on a quarter level California Mastitis Test (CMT) score ≥ trace (n = 884 cows; CMT-group) performed immediately before drying off. All quarters of all cows also received an infusion of a bismuth-based internal teat sealant. Milk samples were collected for microbiology following the last milking, and again within 4 d of calving. Clinical mastitis records from dry off to 30 d into the subsequent lactation were collected. Multilevel, multivariable models were used to assess the effect of assignment to antimicrobial treatment. At drying off, a total of 575 (8.8%) and 147 (2.3%) of the 6,528 quarters had a minor, and a major intramammary infection (IMI), respectively. At drying off, 2089/3270 (63.9%) and 883/3311 (26.7%) of quarters were treated with dry cow therapy in the CMT and SCC-groups, respectively. Apparent bacteriological cure proportion for any IMI was higher in quarters assigned to the CMT than the SCC-group (349/368 (0.95, 95% CI 0.92–0.97) versus 313/346 (0.90, 95% CI 0.87–0.93)). New IMI proportion was lower among quarters assigned to the CMT than SCC-group [101/3,212 (0.032, 95% CI 0.025–0.038) versus 142/3,232 (0.044, 95% CI 0.036–0.051)]. The prevalence of any IMI postcalving was lower in quarters assigned to the CMT than SCC-group [119/3,243 (0.037, 95% CI: 0.030–0.044) versus 173/3,265 (0.054, 95% CI: 0.045–0.062)]. There was no difference in incidence of clinical mastitis between treatment groups. The total mass of antimicrobials used was 63% higher in the CMT-group than in the SCC-group (3.47 versus 2.12 mg/kg of liveweight). Selection of quarters for antimicrobial treatment at the end of lactation based on CMT resulted in greater proportion undergoing bacteriological cure, reduced risk of any new IMI and reduced post calving prevalence of any IMI compared with selection of cows based on SCC. However, CMT-based selection resulted in higher antimicrobial use compared with SCC-based selection, and further research is required to analyze the cost benefit and impact on risk of antimicrobial resistance of these 2 strategies.  相似文献   

13.
Soils and plants in Atlantic Canadian provinces are known to contain low concentrations of selenium (Se). Earlier studies have indicated that dairy producers in Atlantic Canada are providing insufficient supplementary Se in the ration to meet the Se requirements of dairy cattle, as measured by herd-level milk Se concentration. The objective of this study was to evaluate the association between milk Se concentration and somatic cell count (SCC) and the risk of new intramammary infection (IMI) in the dry period, in Atlantic Canadian dairy cows. Eighteen dairy farms participating in the Canadian Bovine Mastitis Research Network cohort study were selected as a convenience sample. On each farm 15 cows to be dried off were selected. Quarter milk samples were collected at 4 and 2 wk before drying-off, within 24 h after calving, and at 7 d after calving to evaluate IMI status. Composite milk samples were analyzed for SCC and Se concentration. Mean milk Se concentration was marginal in 14% of the cows that were on pasture during the grazing season. Milk Se concentration was not associated with the overall odds of new IMI in the dry period; however, the odds of having a new Streptococcus spp. and other gram-positive pathogen IMI in the dry period increased with increasing milk Se concentration. Somatic cell count increased with milk Se concentration, even after adjusting for IMI status. The dairy population in our study had higher ranges for milk Se concentration, whereas ranges for prevalence of IMI, and SCC were lower, compared with those in studies where a negative relationship between Se status and udder health was first noted. Therefore, under the current management conditions, milk Se concentration did not appear to be a principal determinant of udder health.  相似文献   

14.
Evaluation of the use of dry cow antibiotics in low somatic cell count cows   总被引:1,自引:0,他引:1  
The goal of dry cow therapy (DCT) is to reduce the prevalence of intramammary infections (IMI) by eliminating existing IMI at drying off and preventing new IMI from occurring during the dry period. Due to public health concerns, however, preventive use of antibiotics has become questionable. This study evaluated selective DCT in 1,657 cows with low somatic cell count (SCC) at the last milk recording before drying off in 97 Dutch dairy herds. Low SCC was defined as <150,000 cells/mL for primiparous and <250,000 cells/mL for multiparous cows. A split-udder design was used in which 2 quarters of each cow were treated with dry cow antibiotics and the other 2 quarters remained as untreated controls. The effect of DCT on clinical mastitis (CM), bacteriological status, SCC, and antibiotic use were determined at the quarter level using logistic regression and chi-squared tests. The incidence rate of CM was found to be 1.7 times (95% confidence interval = 1.4–2.1) higher in quarters dried off without antibiotics as compared with quarters dried off with antibiotics. Streptococcus uberis was the predominant organism causing CM in both groups. Somatic cell count at calving and 14 d in milk was significantly higher in quarters dried off without antibiotics (772,000 and 46,000 cells/mL, respectively) as compared with the quarters dried off with antibiotics (578,000 and 30,000 cells/mL, respectively). Quarters with an elevated SCC at drying off and quarters with a positive culture for major pathogens at drying off had a higher risk for an SCC above 200,000 cells/mL at 14 d in milk as compared with quarters with a low SCC at drying off and quarters with a negative culture for major pathogens at drying off. For quarters that were culture-positive for major pathogens at drying off, a trend for a higher risk on CM was also found. Selective DCT, not using DCT in cows that had a low SCC at the last milk recording before drying off, significantly increased the incidence rate of CM and SCC. The decrease in antibiotic use by drying off quarters without DCT was not compensated by an increase in antibiotic use for treating CM. Total antibiotic use related to mastitis was reduced by 85% in these quarters.  相似文献   

15.
Mammary glands of early and late lactation cows were challenged with Enterococcus faecium of bovine origin to determine in vivo pathogenicity and milk somatic cell count (SCC) responses. A total of 20 early lactation and 18 late lactation mammary glands were challenged. Two isolates highly adaptive and 2 isolates poorly adaptive for in vitro growth in mammary secretion were used as challenge strains of bacteria. Challenged quarters of early lactation cows were more susceptible to intramammary infection caused by E. faecium than those of late lactation cows. Intramammary challenge with isolates poorly adaptive for in vitro growth in mammary secretions resulted in 94.7% of quarters infected compared with 36.8% of the quarters infused with the isolates highly adaptive for in vitro growth in mammary secretions. Milk from quarters infused with the isolates poorly adaptive for in vitro growth had higher SCC and bacterial counts compared with quarters challenged with the isolates highly adaptive for in vitro growth. A stage of lactation effect within treatment groups was measured when milk SCC were compared between early and late lactation cows. Milk SCC in uninfused (negative control) quarters were lower in early lactation cows compared with late lactation cows. Conversely, in quarters infused with isolates poorly adaptive for in vitro growth, SCC were higher in early lactation cows compared with late lactation cows on d 2, 3, 4, 15, 16, and 17 postchallenge. In quarters infused with isolates highly adaptive for in vitro growth, SCC response did not differ between early and late lactation cows. In vitro growth of E. faecium in mammary secretion was inversely related to in vivo pathogenicity in the mammary glands of early and late lactation cows.  相似文献   

16.
A total of 1304 goat udder halves were sampled monthly during an entire lactation (6262 samples) with the aim of identifying factors affecting milk somatic cell count (SCC). Bacteriological analyses for identification of mastitis pathogens were carried out on all samples and SCC was also determined. All animals were examined for infection by caprine arthritis-encephalitis virus (CAEV) using a commercial ELISA test kit. Results obtained were arranged in two databases (whole-lactation average half-udder database and monthly half-udder database) and two mixed models were applied. Random effects of half udder nested into flock and fixed effects of flock, intramammary infection (IMI) status, number of kids born, length of lactation and interaction of parity with IMI status were significant for the first database. CAEV infection and its interaction with IMI status was not significant. Milk SCC was significantly increased for infected udder halves and milk from udder halves infected with minor pathogens had lower SCC than udder halves infected with major pathogens. For healthy udder halves, SCC was higher in older animals but this effect was not evident in halves with IMI. Multiple birth and short-duration lactation were factors associated with elevated milk SCC. The second mixed model considered repeated measures in time for consecutive samplings throughout lactation (stage of lactation) which was also a significant factor with increasing stage of lactation. The influence of all these factors should be taken into account in the establishment of more reliable diagnostic SCC thresholds for IMI.  相似文献   

17.
Preparturient heifers (n = 561) from 9 herds in 6 US states and 1 Canadian province were enrolled in a study to test the hypothesis that prepartum intramammary therapy would cure existing intramammary infections (IMI) and lead to increased milk production, reduced linear somatic cell count (LSCC), and improved reproductive performance. Mammary secretions were collected 10 to 21 d before expected calving from each quarter. Heifers were then assigned by identification number to receive intramammary therapy consisting of infusion of one tube per mammary quarter of a lactating cow commercial antibiotic preparation containing cephapirin or to a nontreated control group. Overall, 34.1% of mammary quarters were infected with a mastitis pathogen before parturition and 63.4% of heifers had at least one mammary quarter infected. The coagulase-negative staphylococci (CNS) caused the majority (74.8%) of prepartum IMI. Coagulase-positive staphylococci, environmental streptococci, and coliforms accounted for 24.5% of prepartum infections. Treatment had a significant effect on the cure rate of infected mammary quarters. Mammary quarters that were infected prepartum and treated with antibiotics had a 59.5% efficacy of cure rate and the percentage reduction in heifers with IMI was 51.9. Control quarters had a spontaneous cure rate of 31.7%. Treatment did not significantly affect milk production or LSCC in the first 200 d of lactation; however, there was a significant treatment by herd interaction for milk production. Quarters cured of either CNS or major pathogens had a lower LSCC in the first 200 d of lactation. No significant effect on services per conception or days open between treatment and control groups was observed. This trial demonstrated that prepartum intramammary antibiotic therapy did reduce the number of heifer IMI postpartum. Milk production, LSCC, and reproductive performance during the first 200 d of the first lactation were not significantly affected by treatment. Given these results, use of prepartum intramammary antibiotic therapy in heifers as a universal strategy to increase milk production in first-lactation dairy cows may not be warranted.  相似文献   

18.
Conventional culture methods were used to evaluate the ability of an ELISA to identify Staphylococcus aureus IMI. The test was 96% accurate; sensitivity was 90%, and specificity was 97%. The test was used to screen preserved milk samples rapidly in 10 cooperator herds. Prevalence of IMI was greater than 10% in 6 herds at the first test. Average prevalence of cows scoring +2 (suspect) and +3 (positive) was 12.6%. Prevalence declined during the 12-mo study. Incidence of new IMI decreased from 7.9% at 6 mo to 3.6% at 12 mo. Rinsing teat cup liners with a 25-ppm iodophor or 100-ppm chlorine solution reduced the presence of S. aureus on the milking machine liners by 97%. Elevated scores were correlated with increases in lactation number. Milk antibody concentrations changed quadratically with increasing SCC. The SCC increased as milk antibody concentration increased. In 38 dairy herds, bulk tank antibody tests reflected herd prevalence of S. aureus infection. The average prevalence was 15.0% in 87 herds in which all lactating cows were tested.  相似文献   

19.
Bovine mastitis is an important disease in the dairy industry, causing economic losses as a result of withheld milk and treatment costs. Several studies have suggested milk amyloid A (MAA) as a promising biomarker in the diagnosis of mastitis. In the absence of a gold standard for diagnosis of subclinical mastitis, we estimated the diagnostic test accuracy of a commercial MAA-ELISA, somatic cell count (SCC), and bacteriological culture using Bayesian latent class modeling. We divided intramammary infections into 2 classes: those caused by major pathogens (e.g., Escherichia coli, Staphylococcus aureus, streptococci, and lacto-/enterococci) and those caused by all pathogens (major pathogens plus Corynebacterium bovis, coagulase-negative staphylococci, Bacillus spp., Streptomyces spp.). We applied the 3 diagnostic tests to all samples. Of 433 composite milk samples included in this study, 275 (63.5%) contained at least 1 colony of any bacterial species; of those, 56 contained major pathogens and 219 contained minor pathogens. The remaining 158 samples (36.5%) were sterile. We determined 2 different thresholds for the MAA-ELISA using Bayesian latent class modeling: 3.9 µg/mL to detect mastitis caused by major pathogens and 1.6 µg/mL to detect mastitis caused by all pathogens. The optimal SCC threshold for identification of subclinical mastitis was 150,000 cells/mL; this threshold led to higher specificity (Sp) than 100,000 cells/mL. Test accuracy for major-pathogen intramammary infections was as follows: SCC, sensitivity (Se) 92.6% and Sp 72.9%; MAA-ELISA, Se 81.4% and Sp 93.4%; bacteriological culture, Se 23.8% and Sp 95.2%. Test accuracy for all-pathogen intramammary infections was as follows: SCC, sensitivity 90.3% and Sp 71.8%; MAA-ELISA, Se 88.0% and Sp 65.2%; bacteriological culture, Se 83.8% and Sp 54.8%. We suggest the use of SCC and MAA-ELISA as a combined screening procedure for situations such as a Staphylococcus aureus control program. With Bayesian latent class analysis, we were able to identify a more differentiated use of the 3 diagnostic tools. The MAA-ELISA is a valuable addition to existing tools for the diagnosis of subclinical mastitis.  相似文献   

20.
Somatic cell counts (SCC) are generally used as an indicator of udder health. In Germany, a cutoff value of 100,000 cells/mL is currently used to differentiate between healthy and diseased mammary glands. In addition to SCC, differential cell counts (DCC) can be applied for a more detailed evaluation of the udder health status. The aim of this study was to differentiate immune cells in milk of udder quarters classified as healthy based on SCC values of <100,000 cells/mL. Twenty cows were selected and 65 healthy udder quarters were compared with a control group of 15 diseased udder quarters (SCC > 100,000 cells/mL). Cells were isolated from milk of all quarters to measure simultaneously percentages of lymphocytes, macrophages, and polymorphonuclear neutrophilic leukocytes (PMNL) by flow cytometric analysis. The bacteriological status of all 80 quarters was also determined. Differential cell count patterns of milk samples (n = 15) with extreme low SCC values of ≤6,250 cells/mL revealed high lymphocyte proportions of up to 88%. Milk cell populations in samples (n = 42) with SCC values from >6,250 to ≤25,000 cells/mL were also dominated by lymphocytes, whereas DCC patterns of 6 out of 41 milk samples with SCC values from ≥9,000 to ≤46,000 cells/mL indicated already inflammatory reactions based on the predominance of PMNL (56–75%). In 13 of 15 milk samples of the diseased udder quarters (SCC >100,000 cells/mL), PMNL were categorically found as dominant cell population with proportions of ≥49%. Macrophages were the second predominant cell population in almost all samples tested in relation to lymphocytes and PMNL. Further analysis of the data demonstrated significant differences of the cellular components between udder quarters infected by major pathogens (e.g., Staphylococcus aureus; n = 5) and culture-negative udder quarters (n = 56). Even the percentages of immune cells in milk from quarters infected by minor pathogens (e.g., coagulase-negative staphylococci; n = 19) differed significantly from those in milk of culture-negative quarters. Our flow cytometric analysis of immune cells in milk of udder quarters classified as healthy by SCC <100,000 cells/mL revealed inflammatory reactions based on DCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号