首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study we investigated the effect of a two-stage bilateral lesion of the olfactory bulb (OB) in rats on the regeneration ability of peripheral olfactory neurons and their reinnervation capacity in the spared OB. The outgrowth of newly-generated olfactory axons as well as the maturation of their terminal synaptic field was detected by immunohistochemistry of the growth-associated phosphoprotein B-50/GAP-43. In addition, the glial response to the surgery was monitored by an immunohistochemical marker for astrocytes, glial fibrillary acidic protein (GFAP). In neonatal rats (P3-P5), the right OB was removed, then three months later the contralateral side was ablated. Six days after the second operation the animals were transcardially perfused. Their brains were embedded in paraplast, serially sectioned and processed for histological and immunohistochemical observations. After neonatal OB ablation, homogeneous B-50-immunoreactivity (BIR) was found in the forebrain, olfactory axons and ectopic glomeruli localized in the small OB remnant-like structures and in the regenerated neuroepithelium. A strong GFAP response was revealed in the brain cortex as well as in the newly-formed olfactory axons and glomeruli-like structures of the OB remnants. After adult OB ablation strong BIR was observed in olfactory axons, while remaining glomerular structures were only faintly stained. The neuroepithelium revealed signs of massive degenerative processes with a substantial decrease in BIR. The GFAP-positive astrocytes were scattered throughout the entire OB remnant and were prominent in the glomeruli-like structures and adjacent frontal cortex. In the present study, we applied GAP-43 and GFAP immunohistochemistry to characterize the responses of individual olfactory components after two-stage olfactory bulbectomy. Furthermore, this model of OB ablation characterized by two immunohistochemical markers could elucidate certain molecular mechanisms involved in the regeneration and/or plasticity of the olfactory system.  相似文献   

2.
3.
Superoxide dismutases play an important protective role in the lung defense against the pro-oxidative effect of fibrous dusts (e.g. crocidolite fibers). Particularly crocidolite, but also other asbestos fibers, are known to induce cellular antioxidant defense. Although rockwool, a man-made fiber made from rock, is used widely for insulation purposes, its effects on the superoxide dismutases in bronchoepithelial cells have not been investigated. Thus, the purpose of this study was to determine whether human bronchoepithelial cells (BEAS 2B) respond to rockwool fibers (115-4 experimental rockwool fiber) by induction of MnSOD mRNA and an increase of MnSOD activity levels. The results were compared with BEAS 2B cells exposed to silica (alpha-quartz: DQ12; SiO2) and UICC (Union Internationale Contre le Cancer) crocidolite (concentrations of all dusts: 0, 2, 5, 10, 25, 50 micrograms/cm2 = 0, 2.4, 6, 12, 30, 60 micrograms/ml; 24-h exposure) as control fibers. Scanning electron microscopy confirmed close dust cell contact under all experimental settings. Very low MnSOD mRNA baseline levels rose significantly (p < 0.001) in BEAS 2B cells exposed to all three dusts at 2 micrograms/cm2. However, at > 25 micrograms/cm2 MnSOD mRNA levels in silica- and crocidolite- but not in rockwool-exposed cells decreased. Slight (no significance) increases of MnSOD activity were observed which decreased at higher dust (> 5 micrograms/cm2) concentrations. These results suggest that: (1) like crocidolite and silica, rockwool accelerates MnSOD gene expression in bronchoepithelial cells; (2) an increase of MnSOD mRNA levels is not accompanied by MnSOD activity elevation; (3) in contrast to rockwool, high concentrations (> or = 25 micrograms/cm2) of crocidolite and silica reduced MnSOD activity and MnSOD mRNA levels. Because oxidants (H2O2) and crocidolite fibers were shown to reduce SOD activity, lack of active MnSOD protein may be caused by inactivation on a post-translational level. Furthermore, the decline of MnSOD mRNA and MnSOD activity levels coincides with increasing cytotoxicity. In conclusion, rockwool was demonstrated to induce MnSOD gene expression, perhaps because of its pro-oxidative effect in bronchoepithelial cells. In contrast to crocidolite and silica, rockwool fibers are not cytotoxic in this experimental setting.  相似文献   

4.
The effects of spontaneous circling motor activity on the in vitro phosphorylation of the protein kinase C substrate GAP-43/B-50 was studied on striatal membranes of developing rats (30 days of age). At this time of postnatal development, permanent plastic changes in cholinergic and dopaminergic systems are produced by physiological motor activity. Exercised animals showed a significant reduction of 31% in the level of GAP-43/B-50 endogenous phosphorylation in the contralateral striatum respect to the ipsilateral side (P < 0.01), while control animals did not show asymmetric differences. Compared to controls, the contralateral striatum of exercised animals showed a 33% reduction in the incorporation of 32P-phosphate into GAP-43/B-50 30 minutes post-exercise (P < 0.01). This change in GAP-43/B-50 phosphorylation was correlated with the running speed developed by the animals (r:0.8986, P = 0.015). GAP-43/B-50 immunoblots revealed no changes in the amount of this protein in any group. Moreover, a significant variation of 25% (P < 0.05) in the PKC activity was seen between both exercised striata. Interhemispheric differences were not found in control animals. We conclude that endogenous phosphorylation of this protein is also altered by motor activity in the same period that permanent changes in striatal neuroreceptors are triggered after motor training.  相似文献   

5.
6.
Recent evidence suggests that neuronal apoptosis is the consequence of an inappropriate reentry into the cell cycle. Expression of the cell cycle gene cyclin D1, a G1-phase cell cycle regulator, was examined in primary cultures of murine cerebellar granule cells (CGCs) during kainate (KA)-mediated apoptosis. Using cultures of CGCs, we found that a 24-h exposure to KA (1-3,000 microM) induced a concentration-dependent cell death with neurons exhibiting characteristic apoptotic morphology and extensive labeling using the terminal transferase-mediated nick end-DNA labeling (TUNEL) method. KA induced a time- and concentration-dependent increase in expression of cyclin D1 as determined by immunocytochemistry and western blot analysis. KA-induced apoptosis and cyclin D1 expression exhibited a similar concentration dependence and were significantly attenuated by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (50 microM), indicating a KA receptor-mediated effect. Here we present evidence for the first time that KA-induced apoptosis in cultured CGCs involves the induction of cyclin D1, suggesting its involvement in excitotoxic receptor-mediated apoptosis.  相似文献   

7.
Growth-associated protein (GAP-43) immunoreactivity was examined in Pacinian corpuscles of intact neonatal and adult rats as well as after denervation and reinnervation in adult rats. All immature Pacinian corpuscles were GAP-43 immunoreactive (GAP-43+) in their inner cores while only 46 +/- 5.6% of the mature corpuscles exhibited GAP-43+ inner cores. The frequency of GAP-43+ inner cores increased to 90 +/- 7.2% after their permanent denervation. The expression of GAP-43 in the inner cores was reduced by contact with regrowing axons, but 38 +/- 5.3% of Pacinian corpuscles retained GAP-43+ in their inner cores following reinnervation. These results indicate that GAP-43 regulation is not confined only to axons but also involves some extra-axonal cues, and support a role for this protein in the process formation by terminal Schwann cells.  相似文献   

8.
9.
Tacrolimus (FK506), a widely used immunosuppressant drug, has neurite-promoting activity in cultured PC12 cells and peripheral neurons. The present study investigated whether tacrolimus affects the expression of the neuronal growth-associated protein, GAP-43, as well as functional recovery after photothrombotic spinal cord injury in the rat. In injured animals receiving tacrolimus, the number of neurons expressing GAP-43 mRNA and protein approximately doubled compared to that in injured animals receiving vehicle alone. This increase in GAP-43-positive cells was paralleled by a significant improvement in neurological function evaluated by open-field and inclined plane tests. Another FKBP-12 ligand (V-10,367) had similar effects on GAP-43 expression and functional outcome, indicating that the observed effects of tacrolimus do not involve inhibition of the phosphatase calcineurin. Thus, tacrolimus, a drug which is already approved for use in humans, as well as other FKBP-12 ligands which do not inhibit calcineurin, could potentially enhance functional outcome after CNS injury in humans.  相似文献   

10.
OBJECTIVE: The universal cellular response to stress is the expression of a family of genes known as heat shock or stress proteins. We investigated whether bacteria or bacterial products (endotoxin) can induce heat shock protein expression in human enterocytes. DESIGN: Controlled, in vitro study. SETTING: Cell culture laboratory. SUBJECTS: Human Caco-2 enterocyte cell line. MEASUREMENTS AND MAIN RESULTS: Incubation of confluent monolayers of Caco-2 cells with Escherichia coli C25 (1 x 10(9) bacteria/mL) for 1 hr at 37 degrees C was found to induce the expression of the 72-kilodalton molecular weight heat shock protein gene (heat shock protein-72), the major inducible form of the 70-kilodalton molecular weight heat shock protein family of stress proteins, as detected by Western blot analysis. The level of heat shock protein-72 induction after incubation with E. coli was similar to the response of Caco-2 cells to heat shock at 43 degrees C for 1 hr. The induction of heat shock protein-72 gene expression by E. coli was not purely due to the process of phagocytosis, since incubation of Caco-2 cells with latex beads (1 micron) failed to induce heat shock gene expression. To elucidate the possible mechanism of heat shock protein-72 induction mediated by bacteria, Caco-2 cells were incubated with E. coli endotoxin (200 micrograms/mL) for 1 hr at 37 degrees C. Such treatment was also found to induce the synthesis of heat shock protein-72. CONCLUSIONS: These results demonstrate that bacteria and/or bacterial products induce the heat shock gene expression in Caco-2 cells. Since intestinal epithelial cells are constantly in contact with bacteria and bacterial products, we speculate that the heat shock gene expression may be part of the natural mechanism of protection for these cells in the potentially harmful environment that may be present in the intestinal tract.  相似文献   

11.
Treatment with testosterone propionate (TP) after nerve injury is known to accelerate both the rate of axonal regeneration and functional recovery from facial paralysis in the adult male hamster. Peripheral nerve injury is also known to increase the expression of a 43 kilodalton growth-associated protein (GAP-43). In the intact brain, GAP-43 expression is affected by gonadal steroids. We thus postulated that steroidal modulation of GAP-43 gene expression may be a component of the neurotrophic action of TP in regenerating neurons. This issue was examined in hamster facial motor neurons (FMN) which contain androgen receptors and which have been shown to respond to exogenous steroids in a number of previous studies. Castrated adult male hamsters were subjected to right facial nerve transection and treated with either TP via subcutaneous hormone capsule implants, or left untreated (no hormone replacement). At post-injury/treatment times of 0.25, 2, 4, 7, and 14 d, the brain stem regions were harvested, cryostat sections were collected through the facial motor nucleus, and in situ hybridization was done using a 33P-labeled GAP-43 cDNA probe. Quantitative analysis of the autoradiograms by computer assisted grain counting revealed that axotomy produced a dramatic increase in GAP-43 mRNA levels in FMN by 2 d post-axotomy and that this increase remained through 14 d post-injury in both the TP-treated and the untreated group. In the nonhormone-treated group, there was a statistically significant dip in GAP-43 mRNA levels in FMN at 7 d post-operative, relative to 4 d post-operative levels. TP-treatment prevented this transient decline in GAP-43 mRNA levels in axotomized FMN.  相似文献   

12.
The levels of glial fibrillary acidic protein mRNA were analysed by in situ hybridization during the first 6 h in experimental models of status epilepticus in the rat. Two different models of status epilepticus were studied: one is produced by the administration of pilocarpine to lithium-treated rats and the other by the intracerebroventricular administration of kainate. Results obtained in the present study showed a very rapid (as early as 1.5 h in periventricular zones of hypothalamus, cerebral cortex, and hippocampal area) up-regulation of GFAP mRNA levels following the pharmacological induction of seizures. Several other areas showed a GFAP activation starting at 3 h such as septum, habenular nuclei, corpus callosum, and cingulum. The comparison of the results obtained in the two models of status epilepticus revealed interesting differences in some brain areas, such as cerebellum and striatum, which can be related to the specific neurotransmitter receptors and neurochemical pathways stimulated by the drugs. Interestingly, some brain areas whose neurons are strongly activated by pilocarpine and kainate (amygdala and CA3 hippocampal field) and that undergo neuronal degeneration did not show the early GFAP response. An interesting spatial feature was observed in several brain regions examined (striatum, septum, and hypothalamus): the response first appeared in the periventricular zones and then diffused to the rest of the brain area. In general GFAP responses in the periventricular zones were early and intense.  相似文献   

13.
14.
15.
16.
We have examined the subcellular distribution of the growth-associated protein B-50 (GAP-43) in pheochromocytoma (PC12) cells, using confocal microscopy. Proliferating PC12 cells contained very low levels of B-50 in the cytosol. Enhanced expression of B-50 in these cells, evoked by either nerve growth factor (NGF) treatment or transient transfection with rat B-50 cDNA, led to Golgi sorting and membrane targeting of the B-50 protein. Site directed mutagenesis of Cys3Cys4 to Ser3Gly4 in B-50 resulted in a cytosolic distribution. We conclude that Cys3, and Cys4 are essential for accumulation of B-50 both at the plasma membrane and in the Golgi apparatus of PC12 cells.  相似文献   

17.
18.
Hemoglobin A2 (HbA2), which contains delta-globin as its non-alpha-globin, represents a minor fraction of the Hb found in normal adults. It has been shown recently that HbA2 is as potent as HbF in inhibiting intracellular deoxy-HbS polymerization, and its expression is therefore relevant to sickle cell disease treatment strategies. To elucidate the mechanisms responsible for the low-level expression of the delta-globin gene in adult erythroid cells, we first compared promoter sequences and found that the delta-globin gene differs from the beta-globin gene in the absence of an erythroid Krüppel-like factor (EKLF) binding site, the alteration of the CCAAT box to CCAAC, and the presence of a GATA-1 binding site. Second, serial deletions of the human delta-globin promoter sequence fused to a luciferase (LUC) reporter gene were transfected into K562 cells. We identified both positive and negative regulatory regions in the 5' flanking sequence. Furthermore, a plasmid containing a single base pair (bp) mutation in the CCAAC box of the delta promoter, restoring the CCAAT box, caused a 5.6-fold and 2.4-fold (P < .05) increase of LUC activity in transfected K562 cells and MEL cells, respectively, in comparison to the wild-type delta promoter. A set of substitutions that create an EKLF binding site centered at -85 bp increased the expression by 26.8-fold and 6.5-fold (P < .05) in K562 and MEL cells, respectively. These results clearly demonstrate that the restoration of either an EKLF binding site or the CCAAT box can increase delta-globin gene expression, with potential future clinical benefit.  相似文献   

19.
To study the role of the protein B-50/GAP-43 in NGF-induced neurite outgrowth, a number of stable PC12 subclones with either very low or considerably enhanced expression levels of the protein were selected. Cell bodies of subclones with suppressed B-50 expression (-B2, -B5, or -B12) possessed a relative small spherical shape and, on NGF-treatment for 7 d, developed processes that were virtually devoid of branches and that mostly bore short or blunt-ended growth cones. Cells of subclones with overexpression of B-50 (+B3, +B4, or +B11), on NGF treatment, acquired a flattened, spiky appearance with highly branched neurites possessing extended and complex growth cones. Confocal microscopy with immunofluorescence for B-50 and F-actin revealed that in neurites and growth cones of the B-50-deficient subclone -B2, no detectable B-50 and reduced amounts of filamentous F-actin were present, whereas in overexpressing +B3 cells, cell membranes, neurites, and complex growth cones were intensively stained for B-50 and exhibited numerous spikes, in which B-50 was strikingly colocalized with F-actin. These data suggest that, under normal conditions of neuritogenesis, the expression level of B-50 in PC12 cells is decisive for the complexity of neurites and growth cones.  相似文献   

20.
The requirement of Y-chromosome activity for the differentiation of somatic cells and germ cells was studied in the fetal gonads of X/XSxra mouse embryos where the activity of the Sxra fragment of the Y chromosome is influenced by the inactivation and reactivation of the X chromosome. In the interstitial somatic cells, random inactivation of the X and the XSxra chromosomes took place which was revealed by the mosaic expression of an X-linked lacZ transgene. The Sertoli cells, however, displayed a preferentially active XSxra chromosome and the presence of Sxra-active Sertoli cells was associated with the morphogenesis of testicular tubules in the sex-reversed gonads. The activity of the Y-chromosome fragment is therefore necessary for the differentiation of the Sertoli cells which may direct the development of the testis. The expression pattern of the X-linked transgene in X/XSxra germ cells suggests that both the X and the XSxra chromosomes are active. This finding suggests that the presence of Sxra has no impact on the reactivation of the X chromosome in the germ cells and that the X chromosome can be reactivated even though the germ cells are found in the testicular environment. Our results are consistent with the concept that the activity of genes on the XSxra fragment is essential for the differentiation of Sertoli cells and the morphogenesis of the testis, but not for premeiotic differentiation of germ cells in sex-reversed mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号