首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
A non-equilibrium two-phase single-component critical (choked) flow model for cryogenic fluids is developed from first principle thermodynamics. Modern equations-of-state (EOS) based upon the Helmholtz free energy concepts are incorporated into the methodology. Extensive validation of the model is provided with the NASA cryogenic data tabulated for hydrogen, methane, nitrogen, and oxygen critical flow experiments performed with four different nozzles. The model is used to develop a hydrogen critical flow map for stagnation states in the liquid and supercritical regions.  相似文献   

2.
In this paper a theoretical model for the two-phase flow pressure drop type instabilities in an upflow boiling system is presented. The thermal non-equilibrium effect between the two phases is included assuming the enthalpy profile in the subcooled boiling region. The system of differential equations describing the single-phase and boiling regions of the system (drift-flux model) is solved using finite difference method for the steady state characteristics of the system over a wide range of operating conditions. Upon obtaining the steady state characteristics, the dynamic formulation of the pressure drop type oscillation is solved numerically. The modeling results are verified by the experimental findings. The effect of the thermal non-equilibrium on the steady state characteristics, stability boundaries and oscillation periods at different heat inputs and inlet temperatures are presented as being compared with the experimental measurements as well as the results obtained from the thermal equilibrium model.  相似文献   

3.
A one-dimensional two-phase flow and transport model is presented for a packed bed photobioreactor with transparent gel granules containing immobilized photosynthetic bacterial cells. The inherently coupled two-phase flow and mass transport, along with the biochemical reactions occurring in the photobioreactor are taken into account. The source term in the species conservation equation of the substrate is derived from a local transport model for a single gel granule. Model predictions of the glucose consumption efficiency and hydrogen production rate are in good agreement with experimental data. The results show that the photoinhibition of immobilized cells appears at incident light intensities higher than 6000 lux. It is the most suitable for photo-hydrogen production under neutral conditions and 30 °C of the influent substrate solution. Moreover, a high influent substrate solution flow rate results in a large hydrogen production rate due to the improved substrate transport from the bulk solution to gel granules.  相似文献   

4.
A three-fluid model of the dispersed-annular regime of two-phase flow is suggested. The model is based on the conservation equations of mass, momentum, and energy for the gas phase, the dispersed phase (droplets), and the film. Additionally, this model includes the equation for the number density of particles of the dispersed phase, which is used to determine the mean particle size. Calculations are compared with experimental data on the entrainment coefficient, film and droplet flow rates, film thickness, pressure drop, and droplet size.  相似文献   

5.
In this study, a two-fluid (TF) model is developed for two-phase flows in proton exchange membrane fuel cells (PEMFCs). The drag force and lift force between gas and liquid phase are considered in N-S equations. In addition, a simplified model is introduced to obtain the liquid water droplet detachment diameter on the gas diffusion layer (GDL)/channel interface which involves the properties of the GDL/channel interface (contact angle and surface tension). The TF model and the simplified model for the prediction of water droplet detachment diameter on GDL/channel interface are validated by the comparison between the experimental data and the model results, respectively. The effect of the properties of GDL/channel interface (contact angle and surface tension) on two-phase behavior in PEMFCs is investigated, The results show that a high contact angle and a low surface tension are advantageous for liquid water removal in the gas channel and the GDL even though a low surface tension will lead to a low capillary force in the GDL.  相似文献   

6.
In this study, we investigate the air-water two-phase flow in a single flow channel of polymer electrolyte membrane (PEM) fuel cells. In the ex situ study, both straight and serpentine channels with various gas diffusion layer (GDL) surfaces are studied. Focus is placed on the two-phase flow patterns, which are optically characterized using a microscope with a high-resolution camera, and the two-phase pressure amplifiers. We find that the GDL surface properties slightly affect the flow pattern and two-phase pressure amplifier in the flow field configuration. Flow pattern transition occurs at the superficial gas velocity of around 1 m s−1, and the pressure amplifier can reach as high as 10. A two-fluid model is also presented together with one dimensional (1-D) analytical solution, and acceptable agreement is achieved between the model prediction and experimental data at high gas flow rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号