首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, track-etched poly (ethylene terephthalate) (PET) membranes having different pore sizes were functionalized by the carboxylic groups and the amino groups. Palladium (Pd) nanoparticles of average diameter 5 nm were synthesized chemically and deposited onto pore walls as well as on the surface of these pristine and functionalized membranes. Effect of Pd nanoparticles binding on these membranes were explored and aminated membrane were found to bind more Pd nanoparticles due to its affinity. The morphology of these composite membranes is characterized by Scanning Electron Microscope (SEM) for confirmation of Pd nanoparticle deposition on pore wall as well as on the surface. Gas permeability of functionalized and non-functionalized membranes for hydrogen and carbon dioxide has been examined. From the gas permeability data of hydrogen (H2) and carbon dioxide (CO2) gases, it was observed that these membranes have higher permeability for H2 as compared with CO2. Due to absorption of hydrogen by Pd nanoparticles selectivity of H2 over CO2 was found higher as compared to without Pd embedded membranes. Such type of membranes can be used to develop hydrogen selective nanofilters for purification/separation technology.  相似文献   

2.
Effect of Pd overlayer and mixed gases on hydrogen permeation of Pd/Nb30Hf35Co35/Pd composite membranes was investigated. The diameter of Pd particle increases with increasing sputtering power. With this change, the membrane shows a signification reduction in hydrogen permeability/or flux, but its durability and stability increases significantly, which can be mainly attributed to a decrease in hydrogen solubility coefficient. In addition, H2S impurity in mixed gases can greatly degrade membrane performance, especially the hydrogen permeability, whereas the Ar impurity content has less effect in the temperature range of 523–673 K. Lowering of permeability caused by the change of gas purity can be attributed to a decrease in hydrogen solubility, which is closely related to the stronger adsorption of H2S molecules to the Pd overlayer of the membrane. Thus, it is concluded that aside from the optimum design for composition of Nb-based hydrogen permeable alloy to improve their permeability, the control of Pd overlayer film on membrane surface and gas purity in the feed gas is important.  相似文献   

3.
To rationalize the energy requirements and environmental complications of the world, supply of pure hydrogen is the most promising as well best possible approach of such issues. Purified hydrogen gas is the necessity factor for the hydrogen-based economy. Hydrogen perm-selective membrane plays a crucial role for producing a large amount of hydrogen. Palladium is one of the best materials because of its excellent affinity to absorb hydrogen. In present work, our aim to improve selectivity as well permeability of the H2 gas compare to N2 and CO2 gases of the block copolymer coated functionalized porous PET membrane. Porous polyethylene terephthalate (PET) membranes having pore size 0.2 μm, functionalized with a carboxyl group. The supramolecular assembly was prepared from PS (35500)-b- P4VP (4400) and 2-(4- Hydroxyphenylazo) benzoic acid (HABA) in 1, 4-dioxane. Chemically synthesized palladium nanoparticles were deposited on carboxylated block copolymer (BC) coated porous PET membrane. It is an appropriate way to use H2 sensitive materials with block copolymer coated functionalized membranes to enhance the selectivity of H2. It has been found that such membranes gain better permeability and selectivity towards H2 as compared with N2 and CO2. Increment with the dipping time of these membranes in the palladium nanoparticle solution, permeability as well selectivity of H2 over N2, CO2 increases as the more attachment of Palladium nanoparticles. A fine active layer of block copolymer on the carboxyl functionalized PET membrane play a crucial role for hydrogen based gas separation. The magnitude of the permeability of such membranes for different gases shows dependency on the pore size of the upper layer (BC coated) of the membrane in addition to the molecule size of the permeating gas. Block copolymer coating of the membranes established an effective responsibility for the selectivity of H2 over CO2 gas as well over N2 gas.  相似文献   

4.
Hydrogen purification based on Pd deposition in porous polymeric membranes show promising results for hydrogen permeability and selectivity. It is due to high absorption property of Pd nanoparticles. In this work, gas permeability of carboxylic group functionalized Polyethylene terephthalate (PET) membranes with different time of functionalization have been examined. It has been found that PET membrane having more –COOH group shows higher selectivity for Hydrogen (H2). Further to improve the selectivity, these carboxylated PET membranes dipped in Pd nanoparticles solution for 6 h and found more selective for H2 in comparison to Carbon dioxide (CO2) and Nitrogen (N2). As the carboxylation increases selectivity of H2 improves drastically in the beginning and nearly get saturated after 24 h. Similar trend has been observed for these membranes after Pd nanoparticles deposition. Fourier transform infrared spectroscopy (FTIR) spectra of these membranes revealed that intensity of peaks related to –COOH group at 2968 cm?1 & 1716 cm?1 increases with functionalization time. Field Emission Scanning Electron Microscopy (FESEM) was used to study the surface morphology of membranes.  相似文献   

5.
The use of hydrogen as an energy carrier is an attractive solution toward addressing global energy issues and reducing the effects of climate change. Design of new materials with high hydrogen sorption capacity and high stability is critical for hydrogen purification and storage. In this study, titanium dioxide nanotubes (TiO2NTs) were modified with palladium nanoparticles (PdNPs) utilizing a facile photo-assisted chemical deposition approach. Electrochemical anodization was employed for the direct growth of TiO2NTs. The PdNP functionalized TiO2NTs (TiO2NT/Pd) were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The hydrogen sorption behaviours and stability of the TiO2NT/Pd nanocomposites were investigated and compared with nanoporous Pd networks that were deposited on a bulk titanium substrate (Ti/Pd) using cyclic voltammetry (CV) and chronoamperometry (CA). Our studies show that the TiO2NT/Pd nanocomposites possess a much higher hydrogen storage capacity, faster kinetics for hydrogen sorption and desorption, and higher stability than the nanoporous Pd.  相似文献   

6.
Nowadays, gasochromic Pd/WO3 coatings as optically switchable materials have become more applicable for hydrogen sensors and smart windows. In this study, WO3 films were prepared by Pulsed Laser Deposition (PLD) and spin-coating sol-gel techniques. For deposition of Pd, first a layer of PdCl2 was obtained via a simple drop-drying process by dropping PdCl2 solution onto WO3 substrates and drying them at room temperature. Then Pd nanoparticles were synthesized via hydrogen gas exposure that causes reduction of the PdCl2 layer. According to Scanning Electron Microscope (SEM) observations before hydrogen reduction, many individual nanoparticles or fractal-like constructions of palladium were formed in the PdCl2 layer in which the fractal branches were distorted after hydrogen treatment. Surface chemistry of the observed Pd nanoparticles was studied using X-ray Photoelectron Spectroscopy (XPS) at different stages of the reduction process. The results showed that after hydrogen treatment, the chlorine atoms were desorbed from the PdCl2 layer and a metallic Pd layer remained on the surface of WO3. Gasochromic properties in the presence of H2 or O2 gases for different PdCl2 amounts revealed that the rate and saturated level of coloring depends on the PdCl2 amounts as well as on the preparation method of the WO3 substrates due to different porosities.  相似文献   

7.
This work comprises a study of hydrogen separation with a composite Pd-YSZ-PSS membrane from mixtures of H2, N2, CO and CO2, typical of a water gas shift reactor. The Pd layer is extended over a tubular porous stainless steel support (PSS) with an intermediate layer of yttria-stabilized-zirconia (YSZ). YSZ and Pd layers were incorporated over the PSS using Atmospheric Plasma Spraying and Electroless Plating techniques, respectively. The Pd and YSZ thickness values are 13.8 and 100 μm, respectively, and the Pd layer is fully dense. Permeation measurements with pure, binary and ternary gases at different temperatures (350–450 °C), trans-membrane pressures (0–2.5 bar) and gas composition have been carried out. Moreover, thermal stability of the membrane was also checked by repeating permeation measurements after several cycles of heating and cooling the system. Membrane hydrogen permeances were calculated using Sieverts' law, obtaining values in the range of 4·10−5–4·10−4 mol m−2 s−1 Pa−0.5. The activation energy of the permeance was also calculated using Arrhenius' equation, obtaining a value of 16.4 kJ/mol. In spite of hydrogen selectivity being 100% for all experiments, the hydrogen permeability was affected by the composition of feed gas. Thus, a significant depletion in H2 permeate flux was observed when other gases were in the mixture, especially CO, being also more or less significant depending on gas composition.  相似文献   

8.
In the present work, role of palladium (Pd) and tin oxide (SnO2) nanoparticles (NPs) deposited on graphene has been investigated in terms of dual gas sensing characteristics of ethanol and H2 between two temperatures. The incorporation of nanoparticles into graphene has been observed which results a large change in the sensing response towards these gases. It is investigated that, incorporation of isolated Pd NPs on the graphene facilitates the room temperature sensing of H2 gas with fast response and recovery time whereas, isolated SnO2 NPs on graphene enables the detection of ethanol at 200 °C. However, combination of isolated Pd and SnO2 NPs on graphene shows improved sensitivity and good selectivity towards H2 and ethanol, usually not observed in chemiresistive gas sensors. Catalytic PdH interaction and corresponding change in work function of nanoparticles on hydrogenation resulting in modifications in electronic exchange between Pd, SnO2 and graphene are responsible for the observed behavior. These results are important for developing a new class of chemiresistive type gas sensor based on change in the electronic properties of the graphene and NPs interfaces.  相似文献   

9.
This study investigated the effect of gases such as CO2, N2, H2O on hydrogen permeation through a Pd-based membrane −0.012 m2 – in a bench-scale reactor. Different mixtures were chosen of H2/CO2, H2/N2/CO2 and H2/H2O/CO2 at temperatures of 593–723 K and a hydrogen partial pressure of 150 kPa. Operating conditions were determined to minimize H2 loss due to the reverse water gas shift (RWGS) reaction. It was found that the feed flow rate had an important effect on hydrogen recovery (HR). Furthermore, an identification of the inhibition factors to permeability was determined. Additionally, under the selected conditions, the maximum hydrogen permeation was determined in pure H2 and the H2/CO2 mixtures. The best operating conditions to separate hydrogen from the mixtures were identified.  相似文献   

10.
Membrane technology has been used for hydrogen purification. In this work, two-dimensional g-C3N3 monolayer was proposed as an effective hydrogen separation membrane on basis of density functional theory computations. The structure of g-C3N3 monolayer was optimized first, and the computed phonon dispersion confirmed its stability and supported the experimental feasibility. The permeability of H2 and impurity gases, including CO, N2 and CH4, was investigated. Compared with H2, it is more difficult for the impurity gases to penetrate through g-C3N3 monolayer. The high selectivity of H2 vs. CO, N2, and CH4 ensures a superior capability to conventional carbon and silica membranes. With high H2 permeability and selectivity, g-C3N3 monolayer is a potential H2 purification membrane.  相似文献   

11.
Sulfonated poly (ether sulfone) (SP-ES) are prepared and optimized considering the transport properties and physicochemical stability. Afterward, nanocomposite membranes composed of SP-ES containing various loading weights of γ-Fe2O3 nanoparticles are fabricated. Nanoparticles assembled into an aligned form across the membrane by applying magnetic field during solvent casting. The effect of nanoparticles orientation is studied by consideration of the water uptake, membrane ionic conductivity, and activation energy as well as methanol permeability. Aligned membranes have a higher proton conductivity and also lower activation energy for proton migration as well as lower water uptake and methanol permeability. It is also noted that nanocomposite membranes have sufficient thermal stability and high electrochemical performance. Consequently, the anisotropic nanocomposite membranes with oriented nanoparticles demonstrate the ability to have potential application in fuel cells as well as ionic actuators.  相似文献   

12.
Reduced graphene oxide (RGO) was used to improve the hydrogen sensing properties of Pd and Pt-decorated TiO2 nanoparticles by facile production routes. The TiO2 nanoparticles were synthesized by sol–gel method and coupled on GO sheets via a photoreduction process. The Pd or Pt nanoparticles were decorated on the TiO2/RGO hybrid structures by chemical reduction. X-ray photoelectron spectroscopy demonstrated that GO reduction is done by the TiO2 nanoparticles and Ti–C bonds are formed between the TiO2 and the RGO sheets as well. Gas sensing was studied with different concentrations of hydrogen ranging from 100 to 10,000 ppm at various temperatures. High sensitivity (92%) and fast response time (less than 20 s) at 500 ppm of hydrogen were observed for the sample with low concentration of Pd (2 wt.%) decorated on the TiO2/RGO sample at a relatively low temperature (180 °C). The RGO sheets, by playing scaffold role in these hybrid structures, provide new pathways for gas diffusion and preferential channels for electrical current. Based on the proposed mechanisms, Pd/TiO2/RGO sample indicated better sensing performance compared to the Pt/TiO2/RGO. Greater rate of spill-over effect and dissociation of hydrogen molecules on Pd are considered as possible causes of the enhanced sensitivity in Pd/TiO2/RGO.  相似文献   

13.
By combining organic polymers normally used to make membrane filters with inorganic substances, multi-walled carbon nanotube (MWCNTs), an extraordinary ability to separate H2 from CH4 was developed in this study. A series of MWCNTs/PBNPI nanocomposite membrane with a nominal MWCNTs content between 1 and 15 wt% were prepared by solution casting method, in which the very fine MWCNTs were embedded into glassy polymer membrane. Detailed characterizations, such as morphology, thermal stability and crystalline structure have been conducted to understand the structures, composition and properties of nanocomposite membranes. The results found that this new class of membrane had increased permeability and enhanced selectivity, and a useful ability to filter gases and organic vapours at the molecular level.  相似文献   

14.
The search for a clean energy source as well as the reduction of CO2 emissions to the atmosphere are important strategies to resolve the current energy shortage and global warming issues. We have demonstrated, for the first time, a Pebax/poly(dimethylsiloxane)/polyacrylonitrile (Pebax/PDMS/PAN) composite hollow fiber membrane not only can be used for flue gas treatment but also for hydrogen purification. The composite membranes display attractive gas separation performance with a CO2 permeance of 481.5 GPU, CO2/H2 and CO2/N2 selectivity of 8.1 and 42.0, respectively. Minimizing the solution intrusion using the PDMS gutter layer is the key to achieving the high gas permeance while the interaction between poly(ethylene oxide) (PEO) and CO2 accounts for the high selectivity. Effects of coating solution concentration and coating time on gas separation performance have been investigated and the results have been optimized. To the best of our knowledge, this is the first polymeric composite hollow fiber membrane for hydrogen purification. The attractive gas separation performance of the newly developed membranes may indicate good potential for industrial applications.  相似文献   

15.
In this study, novel sodium titanate (Na2Ti3O7) nanotube/Nafion® composite membranes were prepared by a solution casting method. The properties of these composite membranes were studied using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Additionally, the water uptake, methanol permeability, proton conductivity, and selectivity of the composite membranes were measured to evaluate the applicability of these membranes in DMFCs. It was found that the addition of Na2Ti3O7 nanotubes enhanced the water uptake and reduced the methanol permeability of the composite membranes. The proton conductivity and methanol permeability depend on the Na2Ti3O7 nanotube content. Using the selectivity, the optimal nanotube contents was found to be 5 wt%. The new composite membrane was found to have significantly higher selectivity than a pure Nafion® membrane and thus has good potential to outperform Nafion® in DMFCs.  相似文献   

16.
Hydrogen sensor based on graphene nano-composite with Pd-Ag nanoparticles was fabricated by MEMS process. Structural and morphological properties of the sensing film were studied by an energy dispersive spectroscopy (EDS) and field emission scanning electron microscopy (FESEM), respectively. The H2 sensing properties of as-formed sensor were investigated by measuring the resistance changes at different H2 concentrations. The maximum gas response was 16.2% at 1000 ppm of H2 gas. The gas sensitivity of the as-formed H2 sensor showed linear behavior with the hydrogen concentration. Experimental results showed that the coupling of graphene with Pd/Ag alloy enhanced significantly hydrogen sensing performance.  相似文献   

17.
Combination of the reactions by means of membrane separation techniques are of interest. The CO2 methanation was combined with NH3 decomposition by in situ H2 separation through a Pd membrane. The CO2 methanation reaction in the permeate side was found to significantly enhance the H2 removal rate of Pd membrane compared to the use of sweep gas. The reaction rate of CO2 methanation was not influenced by H2 supply through the Pd membrane in contrast to NH3 decomposition in the retentate side. However, the CH4 selectivity could be improved by using a membrane separation technique. This would be caused by the active dissociated H species which might immediately react with adsorbed CO species on the catalysts to CH4 before those CO species desorbed. From the reactor configuration tests, the countercurrent mode showed higher H2 removal rate in the combined reaction at 673 K compared to the cocurrent mode but the reaction rate in CO2 methanation should be improved to maximize the perfomance of membrane reactor.  相似文献   

18.
The widespread demand for clean energy stimulates great interest to hydrogen energy with high energy density and conversion efficiency. Separation technologies by membranes are increasingly applied for hydrogen separation because of its excellent performance and low consumption. In this work, density functional theory simulations is used to study hydrogen separation of Pd–Au–Ag membrane, and the performance of Pd–Au alloy is also compared and discussed. The results indicate that Pd–Au alloy shows superior selectivity to H2 gas over CO, N2, CH4, CO2 and H2S gases, which is in line with experimental results. In particular, the separation selectivity of Pd–Au–Ag to H2 is significantly greater than those for Pd–Au alloy and several currently reported materials. Moreover, the permeability of H2 in Pd–Au–Ag exceeds the limits for industrial production at deferent temperatures. Our calculations demonstrate that Pd–Au–Ag alloy present excellent performance as a promising membrane for hydrogen separation.  相似文献   

19.
A porous nickel support was successfully prepared by uniaxial compression of nickel powders. Microstructures and mechanical properties of Nb40Ti30Ni30 membranes fabricated by magnetron sputtering were investigated. Deposited and annealed Nb40Ti30Ni30 membranes consisted of amorphous and crystalline phases, respectively. Higher base temperature was shown to increase the hardness and elastic modulus of the Nb40Ti30Ni30 membrane. Pd/Nb40Ti30Ni30/Pd/porous nickel support composite membranes were then fabricated using a multilayer magnetron sputtering method. The hydrogen permeability of the composite membranes with amorphous and crystallized Nb40Ti30Ni30 metal layer was measured and compared with that of self-supported Nb40Ti30Ni30 and Pd alloys. Solid-state diffusion was shown to be the rate-controlling factor when the thickness of the Nb40Ti30Ni30 layer was about 12 μm or greater, while other factors were in effect for thinner layers (such as 6 μm). The Pd/Nb40Ti30Ni30/Pd/porous nickel support composite membrane exhibited excellent permeation capability and satisfactory mechanical properties. It is a promising new permeation membrane that could replace Pd and PdAg alloys for hydrogen separation and purification.  相似文献   

20.
The development of compact hydrogen separator based on membrane technology is of key importance for hydrogen energy utilization, and the Pd-modified carbon membranes with enhanced hydrogen permeability were investigated in this work. The C/Al2O3 membranes were prepared by coating and carbonization of polyfurfuryl alcohol, then the palladium was introduced through impregnation–precipitation and colloid impregnation methods with a PdCl2/HCl solution and a Pd(OH)2 colloid as the palladium resources, and the reduction was carried out with a N2H4 solution. The resulting Pd/C/Al2O3 membranes were characterized by means of SEM, EDX, XRD, XPS and TEM, and their permeation performances were tested with H2, CO2, N2 and CH4 at 25 °C. Compared with the colloid impregnation method, the impregnation–precipitation is more effective in deposition of palladium clusters inside of the carbon layer, and this kind of Pd/C/Al2O3 membranes exhibits excellent hydrogen permeability and permselectivity. Best hydrogen permeance, 1.9 × 10−7 mol/m2 s Pa, is observed at Pd/C = 0.1 wt/wt, and the corresponding H2/N2, H2/CO2 and H2/CH4 permselectivities are 275, 15 and 317, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号