首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Brazilian Amazon has experienced considerable colonization in the last few decades. Family agriculture based on slash-and-burn enables millions of people to live in that region. However, the poor nutrient content of most Amazonian soils requires cation-rich ashes from the burning of the vegetation biomass for cultivation to be successful, which leads to forest ecosystem degradation, soil erosion and mercury contamination. While recent studies have suggested that mercury present in soils was transferred towards rivers upon deforestation, little is known about the dynamics between agricultural land-use and mercury leaching. In this context, the present study proposes an explanation that illustrates how agricultural land-use triggers mercury loss from soils. This explanation lies in the competition between base cations and mercury in soils which are characterized by a low adsorption capacity. Since these soils are naturally very poor in base cations, the burning of the forest biomass suddenly brings high quantities of base cations to soils, destabilizing the previous equilibrium amongst cations. Base cation enrichment triggers mobility in soil cations, rapidly dislocating mercury atoms. This conclusion comes from principal component analyses illustrating that agricultural land-use was associated with base cation enrichment and mercury depletion. The overall conclusions highlight a pernicious cycle: while soil nutrient enrichment actually occurs through biomass burning, although on a temporary basis, there is a loss in Hg content, which is leached to rivers, entering the aquatic chain, and posing a potential health threat to local populations. Data presented here reflects three decades of deforestation activities, but little is known about the long-term impact of such a disequilibrium. These findings may have repercussions on our understanding of the complex dynamics of deforestation and agriculture worldwide.  相似文献   

2.
The pulp and paper sector has traditionally been numbered among those industries which are the most damaging to the environment. Based on the scientific literature, this article attempts to describe the behavior of different components of the aquatic environment when exposed to water quality modifications resulting from the effluents of these industries.The first aspect considered treats the global consequences of pulp and paper waste effluents on aquatic life in general. Then, for each of the principal parameters (suspended solids, dissolved oxygen, toxicity) affected by the discharge of these effluents, the article describes the more specific consequences of these agents on sedimentation, on photosynthesis and on the availability of dissolved oxygen in combination with mechanic damage to fish and the toxicity potentials of resinous acids and their derivatives, fatty acids (salts) and sulphurous derivatives on different aquatic organisms. Finally, problems of foul taste and odor (in water and fish) associated with the effluents of pulp and paper mills are discussed.  相似文献   

3.
Abiotic methylation of mercury in the aquatic environment   总被引:3,自引:0,他引:3  
Methylation of inorganic mercury in the aquatic environment has been considered to be largely the result of biological processes, primarily involving sulfate-reducing bacteria. However, these processes cannot account for all of the methylmercury that is formed naturally. A growing body of evidence suggests that chemical reactions represent another possible pathway for mercury methylation in the aquatic environment. In order to assess the abiotic contribution to mercury methylation in the water column, and specifically the conditions under which this contribution may be significant, the current state of knowledge about environmentally significant methylation reactions is reviewed. Results of our laboratory-based investigations of aqueous mercury reactions with some potential methyl donors, including MeCo(dmg)(2)(H2O), a simple model for methylcobalamin, various methyltin compounds and methyl iodide, are presented. In each reaction, the yield of methylmercury and the rate of methylation depend strongly on environmental factors such as pH, temperature, and the presence of complexing agents, especially chloride.  相似文献   

4.
In Oregon's Willamette River Basin (Basin), methylmercury levels in fish triggered health advisories and required development of a mercury Total Maximum Daily Load (TMDL) for the Willamette River. A seasonally-responsive dynamic systems model is used to identify the principal sources of natural and anthropogenic mercury, the relative contributions of these sources to the river, the impact of hypothetical reductions in specific natural and anthropogenic sources on mercury levels in surface water, sediment, and fish tissue, and the degree to which any such changes would be clearly discernible to environmental managers and Basin stakeholders. Two scenarios are modeled: "PRES", which considered all currently known natural and anthropogenic mercury sources and "LEEM", which (hypothetically) eliminated all local, but not global, anthropogenic sources and greatly lowered native soil erosion rates. Elimination of local air emissions reduces runoff of air-deposited mercury by approximately 34% and advection from the Basin by approximately 12%, while lowering erosion rates reduces particulate runoff by approximately 57%, deposition from the water column to surficial sediment by approximately 33%, and fluvial load by approximately 24%; for a net reduction of 25.6% in the total mercury load to the river. Such hypothetical reductions bring methylmercury concentrations in predatory fish to levels that would allow restoration of fish consumption as a beneficial use. However, several factors, primarily technical feasibility and global sources, may impede attempts to attain this beneficial use. Actualizing the hypothetical 100% elimination of local anthropogenic sources and a >50% reduction in erosion could pose significant technical challenges. Because local anthropogenic emissions make relatively smaller contributions to the Basin than do persistent global sources (sources over which there is little, if any, possibility of local control), localized environmental management actions alone may not be adequate to address mercury impacts within the Basin.  相似文献   

5.
The major use of brick masonry units in the U.S. is in facades for office buildings and single family homes. The traditional method for building masonry walls is on-site by bricklayers. An alternative method is panelization or prefabrication of brick panels in a plant environment. While many mechanical problems exist, the real-time control represents a challenging aspect of robotizing brick masonry work. This paper presents an effort to study the development of an experimental robotic masonry system and its relevant control modules. It also describes two control frameworks for different levels in a robotic brick masonry prototype: (a) local control, and (b) global control. The local control system includes three work cells: (a) gripping and handling, (b) quality control, and (c) brick placement. First, the components and equipment used in a work cell are listed, then the experimental work performed with them is discussed to show how sensors are used for dehacking, brick placement, brick color detection, and brick size measurements. The paper then continues to describe a global control system that will integrate the three local work cells utilizing a hierarchical structure.  相似文献   

6.
There is increasing interest in reclaiming tyres for use in bank-side and coastal-protection structures. However, concern has been expressed about the potential for tyres to release pollutants into the environment and to retain their long-term structural stability. This paper describes laboratory leaching tests for heavy metals from new used tyres and tyres which have been exposed to an aquatic environment for thirteen years. The results show that the limiting factor to their use could be cadmium release. Tests found evidence of the loss of ultraviolet screening agents such as carbon black, suggesting that chemical breakdown of the tyre through leaching of vulcanising chemicals is more significant in the physical breakdown of the tyre, than the reverse. Three case studies of tyre flood-protection and river-control structures are presented, which examine the ability of tyres to retain structural integrity over long periods. Based on this evidence, guidance on design principles is offered. It is concluded that tyres can be used sustainably in a river or coastal environment, subject to careful consideration of local site conditions.  相似文献   

7.
Mercury is a neurotoxin and global pollutant, and wetlands and newly flooded areas are known to be sites of enhanced production of monomethylmercury, the form of mercury that is readily biomagnified in aquatic food chains to potentially toxic levels. The Okavango Delta in Botswana, Southern Africa, is the largest inland delta in the world and a wetland ecosystem that experiences dramatic annual flooding of large tracts of seasonal floodplains. The Delta was, therefore, expected to be home to high mercury levels in fish and to be an area where local subsistence fishing communities would be at substantial risk of mercury toxicity from fish consumption. Total mercury concentrations measured in 27 species of fish from the Okavango Delta averaged (mean ± s.d., wet weight) 19 ± 19 ng g−1 in non-piscivorous fish, and 59 ± 53 ng g−1 in piscivorous fish. These mercury concentrations are similar to those reported for fish from lakes in other areas of tropical Africa, demonstrating that not all wetlands are sites of elevated mercury concentrations in biota. Even more intriguing is that concentrations of mercury in fish from across tropical Africa are systematically and substantially lower than those typically reported for fish from freshwater ecosystems elsewhere globally. The reasons for this apparent “African mercury anomaly” are unclear, but this finding poses a unique opportunity to improve our understanding of mercury's biogeochemical cycling in the environment. Mercury concentrations measured in human hair collected in subsistence fishing communities in the Okavango Delta were similarly low (0.21 ± 0.22 μg g−1 dry weight) despite high levels of fish consumption, and reflect the low mercury concentrations in the fish here.  相似文献   

8.
In the town of Idrija, Slovenia, the world's second largest mercury mine was active for 500 years and about 37,000 tons of mercury has been lost in the environment. Mercury is still drained from soil, riverbed and floodplains and transported with the Idrijca and Soca Rivers to the Gulf of Trieste. A part of inorganic mercury is methylated either in the river system, or later in the coastal area, and, due to its bioaccumulation and biomagnification represents potential danger to human health. A 1-D aquatic model MeRiMod was used to simulate hydrodynamics and sediment transport in the river system from Idrija to the Soca River mouth. Transport of particle bound and dissolved mercury as well as potential net methylation of mercury in the river system was simulated. The simulation of an observed flood wave with 20-year recurrence period was performed in order to validate the model. Methylation was simulated at lower discharges, as higher methylation rates occur in such conditions. The measurement data and the MeRiMod model were also used to establish a historical mercury mass balance of the Idrijca and Soca Rivers catchment. Sediment core data from the Gulf of Trieste and the measured concentrations from floodplains were used to verify and calibrate the model. Simulations of different high discharges were performed as most of the transport of particulate mercury occurs within flood wave conditions. Compared to the measurements, the results of the model showed an agreement within an order of magnitude, for the transport of total mercury mostly within a factor of 4, and for the methylation within a factor of 5. However, proper trends of the phenomena were obtained by simulations. The combination of modelling and measurements has resulted in some interesting conclusions about the phenomenon of the transport and transformations of mercury in the observed river system.  相似文献   

9.
Pharmaceuticals and personal care products constitute one of the most common groups of contaminants in surface waters, and little is known about their impact on aquatic wildlife. The antidepressant fluoxetine is among more prevalent categories of pharmaceuticals detected in the aquatic environment. Typical surface water concentrations are in a wide range that can lead to alterations in life of aquatic macroinvertebrates. Because the mode of fluoxetine action is thought to be by modulation of the neurotransmitter serotonin, macroinvertebrates that possess relevant transporters and receptors sensitive are potentially affected by this pharmaceutical. Available information of how this emerging contaminant may affect macroinvertebrate communities is limited. This review describes the influence of pharmaceuticals on aquatic fauna in general and reports the environmental concentrations of some widely used antidepressants. Additionally, we highlighted the effects of fluoxetine as an antidepressant of concern, because of its abundance and potential for toxicity to aquatic macroinvertebrates.  相似文献   

10.
Artisanal gold mining (AGM) with metallic mercury has a long history in Ghana. It is believed to be over 2,000 years old. Today, AGM has escalated in a new dimension consuming about half of the country where gold lode deposits exist along riverbanks or rivers are alluvial-gold rich. The Pra River in southwestern Ghana is a site of on going application of metallic mercury in prospecting gold, and this paper examines mercury (Hg) contamination in the different environmental compartments in its watershed. Samples of water, sediment, soil and biota (i.e., human hair and fish) were collected from locations along the course of the river during the rainy and dry seasons of 2002 and 2003, respectively. Besides the obvious Hg point sources along the Pra and its tributaries, the obtained results show that Hg levels and speciation in the studied aquatic system are controlled by precipitation, which drives the hydrology and differences in flow regimes versus seasons. The seasonal difference in Hg speciation suggests that methyl mercury (MeHg) found in the aqueous phase and riverine sediments is likely of terrestrial origin where its production is favored during the rainy season by high soil water and organic matter content. The use of the enrichment factor (EF) for the assessment of sediment quality indicated moderate to severe contamination of surface sediments in the rainy season, while in the dry season, the EF index indicates nearly no pollution of surface sediments. Accordingly, most of the Hg introduced into this river system is likely transported to depositional downstream terminal basins (e.g. the river delta and the Gulf of Guinea). With regard to biota, Hg measured in hair in the dry period was higher than data obtained on samples collected during the wet period. This could be explained at least in part by the shift in diet as a result of abundance of fish in the local markets and the concurrent increase and more active fishing during the dry season. Mercury data obtained on a very limited number of fish samples collected during the dry period only are also presented.  相似文献   

11.
This study examines factors resulting in an environment burden (local EB) in the region where a building is located, and suggests a method for assessing it. The environmental burden (attached EB) caused by the expansion of infrastructures, such as, roads and parking lots for supporting buildings is also considered. An integrated life cycle impact assessment approach is proposed for buildings based on social cost account, called a region-type life cycle impact assessment (R-LCIA) here, which can give not only the total environment burden on a global scale but also the environment burden in a region scale and the attached EB. Furthermore, as an example of the R-LCIA, the environmental impact of a store building is assessed, and the effects of its location, structural type, and energy system are discussed.  相似文献   

12.
The Arctic has undergone dramatic change during the past decade. The observed changes include atmospheric sea-level pressure, wind fields, sea-ice drift, ice cover, length of melt season, change in precipitation patterns, change in hydrology and change in ocean currents and watermass distribution. It is likely that these primary changes have altered the carbon cycle and biological systems, but the difficulty of observing these together with sporadic, incomplete time series makes it difficult to evaluate what the changes have been. Because contaminants enter global systems and transport through air and water, the changes listed above will clearly alter contaminant pathways. Here, we review what is known about recent changes using the Arctic Oscillation as a proxy to help us understand the forms under which global change will be manifest in the Arctic. For Pb, Cd and Zn, the Arctic is likely to become a more effective trap because precipitation is likely to increase. In the case of Cd, the natural cycle in the ocean appears to have a much greater potential to alter exposure than do human releases of this metal. Mercury has an especially complex cycle in the Arctic including a unique scavenging process (mercury depletion events), biomagnifying foodwebs, and chemical transformations such as methylation. The observation that mercury seems to be increasing in a number of aquatic species whereas atmospheric gaseous mercury shows little sign of change suggests that factors related to change in the physical system (ice cover, permafrost degradation, organic carbon cycling) may be more important than human activities. Organochlorine contaminants offer a surprising array of possibilities for changed pathways. To change in precipitation patterns can be added change in ice cover (air-water exchange), change in food webs either from the top down or from the bottom up (biomagnification), change in the organic carbon cycle and change in diets. Perhaps the most interesting possibility, presently difficult to predict, is combination of immune suppression together with expanding ranges of disease vectors. Finally, biotransport through migratory species is exceptionally vulnerable to changes in migration strength or in migration pathway-in the Arctic, change in the distribution of ice and temperature may already have caused such changes. Hydrocarbons, which tend to impact surfaces, will be mostly affected by change in the ice climate (distribution and drift tracks). Perhaps the most dramatic changes will occur because our view of the Arctic Ocean will change as it becomes more amenable to transport, tourism and mineral exploration on the shelves. Radionuclides have tended not to produce a radiological problem in the Arctic; nevertheless one pathway, the ice, remains a risk because it can accrue, concentrate and transport radio-contaminated sediments. This pathway is sensitive to where ice is produced, what the transport pathways of ice are, and where ice is finally melted-all strong candidates for change during the coming century. The changes that have already occurred in the Arctic and those that are projected to occur have an effect on contaminant time series including direct measurements (air, water, biota) or proxies (sediment cores, ice cores, archive material). Although these 'system' changes can alter the flux and concentrations at given sites in a number of obvious ways, they have been all but ignored in the interpretation of such time series. To understand properly what trends mean, especially in complex 'recorders' such as seals, walrus and polar bears, demands a more thorough approach to time series by collecting data in a number of media coherently. Presently, a major reservoir for contaminants and the one most directly connected to biological uptake in species at greatest risk-the ocean-practically lacks such time series.  相似文献   

13.
Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg(-1) (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of +/-25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis, is beneficial in the prioritization and remediation of mercury-contaminated mine sites.  相似文献   

14.
With the development of analytical capabilities that allow for almost real time measurement of mercury concentrations in air, the fluxes of mercury between environment compartments is being more carefully scrutinized. Recent advances have demonstrated that the mercury cycle is much more complicated than previously realized. This study quantified the mercury emissions from three areas with low levels of mercury enrichment associated with precious and base metal mineralization and recent volcanic/geothermal activity. Area emissions were calculated using Geographic Information System technology, and in situ derived mercury fluxes and those parameters found to statistically be dominant in controlling emissions. The most important controls on emission strengths were found to be geologic while environmental parameters such as light and temperature were found to drive the diel pattern typically observed for mercury emissions. Calculated area averaged emissions were 18.5, 10.0, and 13.6 ng/m2 h for the Flowery Peak, NV, Peavine Peak, NV, and Long Valley Caldera, CA areas, respectively. These emissions are an order of magnitude higher than values applied in global models for natural sources. This study, along with other recent work, demonstrates that natural sources may contribute more mercury than previously recognized to the atmospheric mercury pool.  相似文献   

15.
A mercury-cell chlor-alkali plant operated in Estarreja (North-western Portugal) for 50 years causing widespread environmental contamination. Although production by this process ceased in 2002, mercury contamination from the plant remains significant. The main objective of this study was to investigate mercury impact on the nearby environment and potential risks to local population. To assess the level of contamination soil samples were collected from agricultural fields in the vicinity of the plant, extending the study by taking samples of the predominant vegetation suitable for animal and human consumption, water samples, and fish species from a nearby coastal lagoon, to gain a preliminary insight into the potential for contamination of the terrestrial and aquatic food web. To determine population exposure to mercury, hair samples were collected from local residents. Total mercury concentration in the 0-15 cm layer of soil was found to be highly variable, ranging between 0.010 and 91 mg kg− 1, although mercury contamination of soils was found to be restricted to a confined area. Lolium perenne roots contained between 0.0070 and 2.0 mg kg− 1, and there is evidence that root systems uptake mercury from the soil. Levels of mercury in the aerial parts of plants ranged between 0.018 and 0.98 mg kg− 1. It appears that plants with higher mercury concentration in soils and roots also display higher mercury concentration in leaves.Total mercury concentration in water samples ranged between 12 and 846 ng L− 1, all samples presenting concentrations below the maximum level allowable for drinking water defined in the Portuguese law (1.0 μg L− 1).Mercury levels in fish samples were below the maximum limit defined in the Portuguese law (0.5 mg kg− 1), ranging from 0.0040 to 0.24 mg kg− 1. Vegetables collected presented maximum mercury concentration of 0.17 mg kg− 1. In general, food is not contaminated and should not be responsible for major human exposure to the metal.Mercury determined in human hair samples (0.090-4.2 mg kg− 1; mean 1.5 mg kg− 1) can be considered within normal limits, according to WHO guidelines suggesting that it is not affecting the local population. Despite being subject to decades of mercury emissions, nowadays this pollutant is only found in limited small areas and must not constitute a risk for human health, should these areas be restricted and monitored.Considering the present data, it appears that the population from Estarreja is currently not being affected by mercury levels that still remain in the environment.  相似文献   

16.
Mercury (Hg) has been used for millennia in many applications, primarily in artisanal mining and as an electrode in the chlor-alkali industry. It is anthropogenically emitted as a pollutant from coal fired power plants and naturally emitted, primarily from volcanoes. Its unique chemical characteristics enable global atmospheric transport and it is deposited after various processes, ultimately ending up in one of its final sinks, such as incorporated into deep sediment or bioaccumulated, primarily in the marine environment. All forms of Hg have been established as toxic, and there have been no noted biological benefits from the metal. Throughout time, there have been notable incidents of Hg intoxication documented, and the negative health effects have been documented to those chronically or acutely exposed. Today, exposure to Hg is largely diet or occupationally dependent, however, many are exposed to Hg from their amalgam fillings. This paper puts a tentative monetary value on Hg polluted food sources in the Arctic, where local, significant pollution sources are limited, and relates this to costs for strategies avoiding Hg pollution and to remediation costs of contaminated sites in Sweden and Japan. The case studies are compiled to help policy makers and the public to evaluate whether the benefits to the global environment from banning Hg and limiting its initial emission outweigh the benefits from its continued use or lack of control of Hg emissions. The cases we studied are relevant for point pollution sources globally and their remediation costs ranged between 2,500 and 1.1 million US dollars kg(-1) Hg isolated from the biosphere. Therefore, regulations discontinuing mercury uses combined with extensive flue gas cleaning for all power plants and waste incinerators is cost effective.  相似文献   

17.
《Building and Environment》2004,39(4):483-492
Globally designers are concentrating on minimising the impact their buildings make on the environment. Although many claim their buildings to be sustainable, unless an objective analysis is carried out, it is not possible to determine the impact that a particular building has on the environment. This paper describes a method that has been developed at the University of Auckland for a detailed life cycle analysis of an individual house in New Zealand based on the embodied and operating energy requirements and life cycle cost over the useful life of the building.  相似文献   

18.
The industrial scale production and wide variety of applications of manufactured nanoparticles (NPs) and their possible release in considerable amounts into the natural aquatic environment have produced an increasing concern among the nanotechnology and environmental science community. In order to address this issue, it is important to understand NP chemistry, preparation, reactivity and possible mechanisms involved in their interaction with the naturally occurring aquatic components, particularly natural colloids and NPs present in the aquatic systems. In this review, an overview of the chemistry of both manufactured and natural aquatic NPs is outlined. This review discusses the physico-chemical aspects of both type of NPs as an essential point to assess possible routes involved in manufactured NP fate in the natural aquatic environment and their toxicity. Key advances related to the characterisation of the manufactured NPs and natural colloids.  相似文献   

19.
Lakes in temperate regions stratify during summer and winter months, creating distinct layers of water differentiated by their physical and chemical characteristics. When lakes mix in autumn and spring, mercury cycling may be affected by the chemical changes that occur during mixing. Sampling was conducted in Lake Lacawac, Eastern Pennsylvania, USA, throughout the autumn of 2007 to characterize changes in emission of gaseous elemental mercury (Hg0) from the lake surface and dissolved mercury profiles in the water column during mixing. Water chemistry and weather parameters were also measured, including dissolved organic carbon (DOC), iron, and solar radiation which have been shown to interact with mercury species. Results indicate that emission of Hg0 from the lake to the atmosphere during turnover was controlled both by solar radiation and by surface water mercury concentration. As autumn turnover progressed through the months of October and November, higher mercury concentration water from the hypolimnion mixed with epilimnetic water, increasing mercury concentration in epilimnetic waters. Dissolved absorbance was significantly correlated with mercury concentrations and with iron, but DOC concentrations were essentially constant throughout the study period and did not exhibit a relationship with either dissolved mercury concentrations or emission rates. Positive correlations between dissolved mercury and iron and manganese also suggest a role for these elements in mercury transport within the lake, but iron and manganese did not demonstrate a relationship with emission rates. This research indicates that consideration of seasonal processes in lakes is important when evaluating mercury cycling in aquatic systems.  相似文献   

20.
Naturally mercury-enriched substrate is a long-lived source of mercury to the global atmospheric mercury cycle. Field flux chambers, laboratory gas exchange chambers and micrometeorological methods may be applied to estimate emissions from these sources. However, field chamber experimental design may affect the magnitude of the fluxes measured, and the laboratory chamber only provides a minimum estimate of flux. Many factors, such as mercury concentration and speciation in substrate, light, precipitation, and temperature, influence the emission of mercury from the substrate. Mercury concentration in the substrate is a dominant factor controlling emissions and may be used to predict emissions from regions of mercury enrichment. Mercury fluxes measured from three areas of natural enrichment and three areas with low levels of mercury enrichment are 1-5 orders of magnitude greater than the value applied to global belts of natural enrichment. Preliminary scaling of emissions from one of these areas and for western North America indicates that mercury enriched areas may be significant sources of mercury to the atmosphere, and that their contribution to regional and global atmospheric budgets needs to be reassessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号