首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 982 毫秒
1.
A method is described for the transmission and scanning electron microscope study of the relationship between the microstructure and the fracture properties of two quenched and tempered, electron beam melted, modified SAE 4620 steels consisting of tempered low carbon martensite. Among all the microstructure constituents considered, the constituentR (randomly oriented, “tempered low carbon martensite, TLCM”) achieved the highest probability for dimple fracture. The thick TLCM laths (designated as the microstructure constituent II) exhibited higher probability of dimple plus quasi-dimple mode of fracture than the thin laths (I). It is concluded that the steel EB1035 derived the high toughness from a) the high concentration of the “high toughness” microstructure constituentsR and II, b) “non-embrittled” prior austenite grain boundaries with 50 pct probability for smooth plus quasi-smooth mode and 50 pct dimple plus quasi-dimple mode of intergranular fracture. In contrast, besides having low content ofR and II, the steel EB1014 displayed “completely embrittled” prior austenite grain boundaries with 100 pct probability for smooth plus quasi-smooth intergranular fracture. The conclusions derived from the microconstituentsR, II and I seemed to reflect the “embrittling” effect of decreased spacings between the pseudo twin related laths and between the lath boundary cementite films, and the “toughening” effect of the randomly oriented laths. Auger spectra obtained from the fracture surface before and after sputtering is analyzed to determine the presence of grain boundary sulfur segregation.  相似文献   

2.
The effect of the welding cycle on the fracture toughness properties of high-strength low alloy (HSLA) steels is examined by means of thermal simulation of heat-affected zone (HAZ) microstructures. Tensile tests on notched bars and fracture toughness tests at various temperatures are performed together with fracture surface observations and cross-sectional analyses. The influence of martensite-austenite (M-A) constituents and of “crystallographic” bainite packets on cleavage fracture micromechanisms is, thus, evidenced as a function of temperature. Three weakest-link probabilistic models (the “Master-curve” (MC) approach, the Beremin model, and a “double-barrier” (DB) model) are applied to account for the ductile-to-brittle transition (DBT) fracture toughness curve. Some analogy, but also differences, are found between the MC approach and the Beremin model. The DB model, having nonfitted, physically based scatter parameters, is applied to the martensite-containing HAZ microstructures and gives promising results.  相似文献   

3.
The effect of the welding cycle on the fracture toughness properties of high-strength low alloy (HSLA) steels is examined by means of thermal simulation of heat-affected zone (HAZ) microstructures. Tensile tests on notched bars and fracture toughness tests at various temperatures are performed together with fracture surface observations and cross-sectional analyses. The influence of martensite-austenite (M-A) constituents and of “crystallographic” bainite packets on cleavage fracture micromechanisms is, thus, evidenced as a function of temperature. Three weakest-link probabilistic models (the “Master-curve” (MC) approach, the Beremin model, and a “double-barrier” (DB) model) are applied to account for the ductile-to-brittle transition (DBT) fracture toughness curve. Some analogy, but also differences, are found between the MC approach and the Beremin model. The DB model, having nonfitted, physically based scatter parameters, is applied to the martensite-containing HAZ microstructures and gives promising results.  相似文献   

4.
Susceptibility to heat-affected zone (HAZ) cracking during electron-beam welding was studied in two INCONEL 718-based alloys doped with different levels of boron. By lowering the carbon, sulfur, and phosphorous concentrations to be “as low as possible,” the occurrence of HAZ cracking was related directly to the level of segregation of boron at grain boundaries, which occurred by nonequilibrium segregation during a preweld heat treatment. The study has demonstrated a direct correlation between the amount of boron segregated at grain boundaries and their susceptibility to HAZ cracking, in terms of the total crack length and number of cracks observed in the HAZ. The analysis of results suggests that both the melting and resolidification temperatures of the boron-segregated grain boundaries can be about 100 °C to 200 °C lower than those of the grain boundaries that were susceptible to constitutional liquation of Nb carbides on them, making boron more deleterious in causing HAZ cracking.  相似文献   

5.
The formation and microstructure of the granular product and its effect on the mechanical properties of a high-strength, low alloy steel containing molybdenum and niobium have been investigated. It was found that the granular product “islands” are composed of both twinned martensite and dislocated martensite. The effect of the granular “islands” on the strength at room temperature and at 400 °C has been determined. The results showed that the strength increased and both the impact and fracture toughness decreased as the volume fraction of granular “islands” was increased.In situ fracture studies indicated that the three stages of the microfracture process of the specimen containing granular “islands” are the initiation of voids at interfaces between the granular “islands” and the bainitic ferrite matrix, followed by void growth and finally, coalescence by shear.  相似文献   

6.
Steeliswidelyusedbecauseofitsgoodcompre hensive properties ,plentyofresourceandlowerprice .Thestrengthandtoughnessaretwoimpor tantpropertiesofsteels ,andpeoplemakeeffortstoincreasetheirvalues .Addingalloyingelementandcontrollingmicrostructurearetwobasicwaystoac complishtheaim .Therefinedmicrostructureob tainedbyprocessingtechniqueenablesthestrengthandtoughnessofsteeltobeincreasedwithoutaddingalloyingelementandtheratioofperformance costtobeincreased .Theultra finegrainedsteelshavefer ritegrains…  相似文献   

7.
Microstructural degradations in the base metal adjacent to the weld pool, i.e., the heat-affected zone (HAZ), caused during welding of 2.25Cr-1Mo steel, were characterized by electron and optical microscopy of different regions of the weldments. In order to study the influence of the microstructural degradations on scaling kinetics in steam and the resulting subscale features, samples of the base metal, the HAZ, and weld metal specimens were extracted from the weldment and oxidized in an environment of 35 pct steam+nitrogen at 873 K for 10 hours. Oxide scales formed in the three regions and the underlying subscales were characterized using scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). Influence of the “free” chromium content in the three weldment regions on protective scale formation and on the subscale features has been investigated. As the principal achievement, this study has clearly shown the occurrence of oxidation-induced void formation in the subscale zone and grain boundary cavitation in the neighboring area during steam oxidation of the HAZ. This article also discusses the possible role of oxidation-induced void formation and grain boundary cavitation in the inferior service life of welds in 2.25Cr-1Mo steel components.  相似文献   

8.
Multipass weld deposits produced with a Mn-modified Type 316L filler material exhibited fracture toughness nearly 100 MPa√m less than that of a conventional 316L filler material when tested at 4.2 K. Although fracture in both materials occurred by ductile rupture, the crack path in the Mn-modified weld metal was microstructure-specific. The resultant fracture surface exhibited a “corduroy” morphology which reflected the underlying solidification pattern. Corresponding fracture surfaces in compact tension and tensile specimens from the standard 316L weld deposits showed little tendency for microstructure-specific fracture. A model is proposed which relates the fracture morphology and fracture toughness to the microstructural stability of the austenite during testing at 4.2 K. Partitioning of manganese and molybdenum to cellular dendritic boundaries during weld solidification tends to stabilize the austenite and suppress martensite formation in these regions. As a result, fracture occurs preferentially along these boundaries in the Mn-modified weld deposits, giving rise to the “corduroy” fracture morphology and providing less resistance to fracture than in weld deposits where martensite formation is more homogeneous. Formerly with Sandia National Laboratories, Livermore, CA 94550. Formerly of Lawrence Livermore National Laboratory.  相似文献   

9.
The addition of 0.06 monolayers of antimony to the grain boundaries of iron with 0.3 monolayers of sulfur was found to have no effect on the fracture toughness or subcritical crack growth behavior at cathodic potentials. Tests were conducted using compact tension type samples tested in 1N H2SO4 at cathodic potentials of −0.6V (SCE) to −1.25V (SCE). The absence of any effect of antimony on the fracture toughness was related to iron being in a “minimum” fracture toughness condition such that further segregation of an embrittling element had no effect. Also, the subcritical intergranular crack growth threshold was found to decrease with increasing cathodic potential consistent with results reported by others for transgranular fracture of steels in gaseous hydrogen.  相似文献   

10.
A study has been made of the influence of intergranular solute segregation on fracture toughness K1c in a series of Ni-Cr steels individually doped with Sb, Sn, and P. By means of toughness measurements in steels having two different intergranular Sb distributions, of measurements of acoustic emissions and of scanning electron micrographs of a load-interrupted and post-test-fatigued specimen, the values of K1c, computed from the “pop-in” load of the loadvs clip gauge displacement curves, are found to represent the formation of many patches of contiguous intergranular microcracks ahead of the precrack. The present experiments demonstrate that in the early stage of solute segregation, K1c decreases more substantially than does the strength of grain boundaries σ* (measured in the notched bar tests), although the embrittlement effects of metalloid elements are the same order for both K1c and σ*. A proposed model for the stress-gradient-control of brittle fracture supports the finding that the measurements of K1c give a distorted view of the progress of intergranular embrittlement.  相似文献   

11.
Thermomechanically controlled rolling of steel plate can involve substantial straining in the intercritical temperature region, which may result in the final ferrite grains not fully recrystallizing, and, hence, the presence of low-angle grain boundaries. It is shown in this article that a Nb-microalloyed thermomechanically controlled rolled (TMCR) steel can contain a high proportion of low-angle grain boundaries (the extent depending on the thermomechanically controlled rolling schedule) and that during toughness testing, the crack front ignores boundaries with less than a 12 deg misorientation. Thus, the average microstructural unit experienced by the crack front (i.e., the cleavage facet) is significantly larger than the average metallographic, two-dimensional grain size. Consequently, use of the metallographic grain size gives a poor prediction of the impact transition temperature (ITT) and fracture stress for these steels. It is also shown that the micromechanism of crack initiation and propagation involves grain-boundary carbides and groups of closely aligned grains that act as single “effective” grains.  相似文献   

12.
The influence of strain-rate on the stress-corrosion cracking properties of wholly austenitic Type 304 base metal and duplex austeno-ferritic Type 304 weld metal in boiling MgCl2 was investigated using constant extension rate tensile testing techniques. Transgranular SCC in both base and weld metals is preferred at low strain-rates, while intergranular cracking in the base metal and interphase cracking along the austenite-ferrite interface in the weld metal are preferred at higher strain-rates. Promotion of the intergranular stress-corrosion cracking in the base metal and “interphase-interface” stresscorrosion cracking in the weld metal with increases in strain-rate may be mechanistically analogous. Stress-induced alterations in the grain or interphase boundary defect structure may make these regions preferentially susceptible to dissolution. W. A. BAESLACK III, Lt., USAF, formerly with Rensselaer Polytechnic Institute, Troy, New York  相似文献   

13.
The principal limitation of today’s Ni- and Fe-based superalloys continues to be their susceptibility to intergranular degradation arising from creep, hot corrosion, and fatigue. Many precipitation-strengthened superalloys are also difficult to weld, owing to the formation of heat-affected zone (HAZ) cracks during postweld heat treatments (PWHTs). The present work highlights significant improvements in high-temperature intergranular degradation susceptibility and weldability arising from increasing the relative proportion of crystallographically “special” low-Σ CSL grain boundaries in the microstructure. Susceptibility to intergranular degradation phenomena is reduced by between 30 and 90 pct and is accompanied by decreases in the extent and length of PWHT cracking of up to 50-fold, with virtually no compromise in mechanical (tensile) properties upon which the functionality of these specialty materials depends. Collectively, the data presented suggest that “engineering” the crystallographic structure of grain boundaries offers the possibility to extend superalloy lifetimes and reliability, while minimizing the need for specialized welding techniques which can negatively impact manufacturing costs and throughput.  相似文献   

14.
Directional solidification (DS) of “powder-cloth” (PC) processed sapphire-NiAl composites was carried out to examine the influence of fabrication technique on the fiber-matrix interfacial shear strength, measured using a fiber-pushout technique. The DS process replaced the fine, equiaxed NiAl grain structure of the PC composites with an oriented grain structure comprised of large columnar NiAl grains aligned parallel to the fiber axis, with fibers either completely engulfed within the NiAl grains or anchored at one to three grain boundaries. The load-displacement behavior during the pushout test exhibited an initial “pseudoelastic” response, followed by an “inelastic” response, and finally a “frictional” sliding response. The fiber-matrix interfacial shear strength and the fracture behavior during fiber pushout were investigated using an interrupted pushout test and fractography, as functions of specimen thickness (240 to 730 μm) and fabrication technique. The composites fabricated using the PC and the DS techniques had different matrix and interface structures and appreciably different interfacial shear strengths. In the DS composites, where the fiber-matrix interfaces were identical for all the fibers, the interfacial debond shear stresses were larger for the fibers embedded completely within the NiAl grains and smaller for the fibers anchored at a few grain boundaries. The matrix grain boundaries coincident on sapphire fibers were observed to be the preferred sites for crack formation and propagation. While the frictional sliding stress appeared to be independent of the fabrication technique, the interfacial debond shear stresses were larger for the DS composites compared to the PC composites. The study highlights the potential of the DS technique to grow single-crystal NiAl matrix composites reinforced with sapphire fibers, with fiber-matrix interfacial shear strength appreciably greater than that attainable by the current solid-state fabrication techniques.  相似文献   

15.
High-strength steel development for pipelines: A brazilian perspective   总被引:1,自引:0,他引:1  
The production of American Petroleum Institute (API) class steels using the traditional controlled rolling route rather than the process involving accelerated cooling necessitates a careful adjustment of steel composition associated with the optimization of the rolling schedule for the deformation and phase transformation characteristics of these modified alloys. The current work presents a study of two, NbCr and NbCrMo, steel systems. The microstructure obtained is correlated not only with the resulting mechanical properties, but also with the weldability and resistance to damage in the aggressive environments to which the materials are exposed. The evaluation of the steels was undertaken at two stages along the production route, sampling the material as plate and as tubular product, according to the API 5L 2000 standard. Tensile testing, Charpy-V impact testing, and hardness measurements were used to determine the mechanical properties, and microstructural characterization was performed by optical and scanning electron microscopy. The results showed that it was possible to obtain good impact properties, for both steels, in plate and tube formats. The Charpy-V impact energy, measured at −20 °C from 100 to 250 J corresponds to a toughness level above that required by the API 5L 2000 standard, which specifies 68 to 101 J at 0 °C. The yield strength (YS) to ultimate tensile strength (UTS) ratio was determined to be 0.8, the API standard establishing a maximum limit of 0.93. Both of the alloys investigated exhibited a bainitic microstructure and were successfully processed to fabricate tubular products by the “UOE” (bending in “U”, closing in “O,” and expanding “E”) route. with regard to weldability, the two experimental steels exhibited a heat-affected zone (HAZ) for which toughness levels (using the temperature associated with a 100 J impact energy as a base for comparison) were higher than those for both the base metal (BM) and the weld metal (WM) itself. In order to perform the evaluation of the behavior of the steels in an aggressive environment, more specifically their resistance to the deleterious effects of H2S, slow strain rate tests (SSRTs) were carried out, immersing the samples in a sodium thiosulfate solution during the tests. Though no secondary cracking was observed in the test samples, the ductility levels measured were lower than those for the same materials tested in air. Constant load tests were also conducted according to the standard NACE conditions. Despite the more aggressive nature of the test solution in these cases, no samples of either steel suffered failure.  相似文献   

16.
In this investigation, fracture loads, toughness values, and the lengths of fibrous cracks on fracture surfaces were measured in Charpy V, crack tip opening displacement (COD), and precracked impact testing at various temperatures for C-Mn base steel and C-Mn and Ti-B weld metals. The uniaxial tensile properties of these metals were measured as well. By plotting the parameters related to toughness against the length of fibrous cracks measured, the energy absorbed by unit crack extension was estimated. The local cleavage fracture stresses, oy, were measured in Charpy V-notched and COD precracked specimens. The results showed σf about 600 MPa higher in the latter than in the former. Based on the results obtained, the factors controlling the toughness were analyzed. This was explained by the brittle transition temperature of the base metal being higher than that of the weld metal in the Charpy V test; however, it was lower in the COD test. The differences in fracture behavior between various types of toughness specimens were analyzed. The prerequisite condition for establishing the correlation between the results of Charpy V and COD tests was also discussed.  相似文献   

17.
In this study, microstructures of a heat-affected zone (HAZ) of an SA 508 steel were identified by Mossbauer spectroscopy in conjunction with microscopic observations, and were correlated with fracture toughness. Specimens with the peak temperature raised to 1350 °C showed mostly martensite. With the peak temperature raised to 900 °C, the martensite fraction was reduced, while bainite or martensite islands were formed because of the slow cooling from the lower austenite region and the increase in the prior austenite grain size. As the martensite fraction present inside the HAZ increased, hardness and strength tended to increase, whereas fracture toughness decreased. The microstructures were not changed much from the base metal because of the minor tempering effect when it was raised to 650 °C or 700 °C. However, fracture toughness of the subcritical HAZ with the peak temperature raised to 650 °C to 700 °C was seriously reduced after postweld heat treatment (PWHT) because carbide particles were of primary importance in initiating voids. Thus, the most important microstructural factors affecting fracture toughness were the martensite fraction before PWHT and the carbide fraction after PWHT.  相似文献   

18.
High-strength products made from atomized Al-Zn-Mg-Cu-Co alloy powders have good combinations of strength, ductility, resistance to stress-corrosion cracking and fracture toughness. Powder Metallurgy (PJM) methods produce fine metallurgical structures and compositions which cannot be produced by Ingot Metallurgy (IJM) methods. Fine structures result from very rapid solidification and from the effect of fine dispersoids in restricting grain growth. Stress-corrosion cracking (SCC) performance is favored by grain morphology of PJM products. Co2Al9 particles in PJM products are 0.02 to 2.0 μm spheroids occurring frequently on grain boundaries where they may serve several functions in slowing SCC attack. Oxide particles are irregular shapes, 0.01 to 0.04 μm in size, occurring in clusters at grain boundaries and in grain bodies. Some of the oxide particles are magnesium oxide and alter the environment in a SCC crack to arrest attack. Porosity is not a significant factor in the structure of PJM products made by a vacuum compacting process. P/M wrought products have superior combinations of high strength and stress-corrosion cracking resistance compared to IJM 7075 and 7050 alloys. While equaling the fracture toughness of 7075 alloy, the PJM products at present have somewhat lower fracture toughness than 7050 alloy, due in part to a larger amount of second-phase particles in the form of Co2Al9 and oxide. This paper is based on an invited presentation made at a symposium on “Advances in the Physical Metallurgy of Aluminum Alloys” held at the Spring Meeting of TMS-IMD in Philadelphia, Pennsylvania, on May 29 to June 1, 1973. The symposium was co-sponsored by the Physical Metallurgy Committee and the Non-Ferrous Metals Committee of TMS-IMD.  相似文献   

19.
Microstructural evaluation of Ti-6-22-22 alloy   总被引:1,自引:0,他引:1  
In this study, the microstructure of Ti-6-22-22 alloy as a function of aging time and temperature was examined and related to its fracture behavior. Fracture primarily occurred along prior β grain boundaries, but the morphology of the fracture surfaces varied from very smooth to rough and dimpled with increasing fracture toughness. Changes in the density of acicular α, silicides, and ordering in α were found to influence the fracture toughness. Ordering in the α phase was found to reduce fracture toughness significantly, while an increased density of acicular α reduced the toughness only slightly. The amount of partitioning of alloying elements was not found to correlate directly with toughness.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号